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PROLOGU E 
 
The first time I encountered the work of William Utermohlen was during a presentation at 
Brasenose College in Oxford, where one of the research fellows spoke about Alzheimer’s 
disease, and highlighted a case from several years before at Queen Square, London. It was 
the case of an artist with great skill and a flourishing career who, after being diagnosed with 
Alzheimer’s disease, decided to create a portrait of his own demise.  
 
William Utermohlen (Philadelphia, PA, 1933) studied art at the Pennsylvania Academy of 
Fine Arts, and at the Ruskin School of Art in Oxford (UK), before settling in London in 1962. 
There he experienced his breakthrough as an artist, with notable exhibitions at the 
prestigious Marlborough gallery, and for decades to come Utermohlen would entice art 
observers with numerous portraits, still lives, and drawings. Yet, in the late 1980s something 
happens. Colour and composition start to change, perception of objects and people shifts, as 
the artist’s work seems to enter a new thematic cycle. But in hindsight, these changes are no 
mere artistic evolution. As eloquently described by Dr. Patrice Polini in an analysis of 
Utermohlen’s work from 1989 to 1991 (themed Conversation Pieces): “The artist excludes 
himself from the circles of talking figures, and when he does show himself, places his figure 
in a separate world: sleeping and dreaming (Bed), or communing with mute animals (Snow).” 
They are the premonitions of a gradually progressing disease.  
 
In the following years, Utermohlen’s style changes dramatically. Lines turn more abstract 
and colours darken, while anatomic positioning deteriorates. What for the patient attending 
a memory clinic is captured in a flawed double pentagon or the drawing of a clock is for the 
artist the gradual decline in his abilities on canvas. When Utermohlen eventually is 
diagnosed with Alzheimer’s disease in 1995, this is the confirmation of process that had 
started many years before. It renders his series of self-portraits, as depicted on the cover of 
this edition, not only a unique collection of art, but also a precious medical document 
exemplifying the long-term change in ability and personality that precedes a diagnosis of 
dementia. From the perspective of a doctor and medical researcher, it implies that we need 
to focus on these first, very early changes, or perhaps even subclinical brain changes years 
prior to that, if we are to turn the tide of this disease.  
 
Because of its powerful message, the story of William Utermohlen has been told many 
times, from documentaries like L'oeil de Verre (2009) to exhibitions by the Wellcome trust 
and publication in The Lancet. By visualising the inescapable deterioration in his series of 
self-portraits, Utermohlen has left us an urgent reminder that the development of 
preventive strategies against dementia deserves our utmost dedication.  



C O N T E N T  

XII 
 

  

P R O L O G U E  

1 
 

PROLOGU E 
 
The first time I encountered the work of William Utermohlen was during a presentation at 
Brasenose College in Oxford, where one of the research fellows spoke about Alzheimer’s 
disease, and highlighted a case from several years before at Queen Square, London. It was 
the case of an artist with great skill and a flourishing career who, after being diagnosed with 
Alzheimer’s disease, decided to create a portrait of his own demise.  
 
William Utermohlen (Philadelphia, PA, 1933) studied art at the Pennsylvania Academy of 
Fine Arts, and at the Ruskin School of Art in Oxford (UK), before settling in London in 1962. 
There he experienced his breakthrough as an artist, with notable exhibitions at the 
prestigious Marlborough gallery, and for decades to come Utermohlen would entice art 
observers with numerous portraits, still lives, and drawings. Yet, in the late 1980s something 
happens. Colour and composition start to change, perception of objects and people shifts, as 
the artist’s work seems to enter a new thematic cycle. But in hindsight, these changes are no 
mere artistic evolution. As eloquently described by Dr. Patrice Polini in an analysis of 
Utermohlen’s work from 1989 to 1991 (themed Conversation Pieces): “The artist excludes 
himself from the circles of talking figures, and when he does show himself, places his figure 
in a separate world: sleeping and dreaming (Bed), or communing with mute animals (Snow).” 
They are the premonitions of a gradually progressing disease.  
 
In the following years, Utermohlen’s style changes dramatically. Lines turn more abstract 
and colours darken, while anatomic positioning deteriorates. What for the patient attending 
a memory clinic is captured in a flawed double pentagon or the drawing of a clock is for the 
artist the gradual decline in his abilities on canvas. When Utermohlen eventually is 
diagnosed with Alzheimer’s disease in 1995, this is the confirmation of process that had 
started many years before. It renders his series of self-portraits, as depicted on the cover of 
this edition, not only a unique collection of art, but also a precious medical document 
exemplifying the long-term change in ability and personality that precedes a diagnosis of 
dementia. From the perspective of a doctor and medical researcher, it implies that we need 
to focus on these first, very early changes, or perhaps even subclinical brain changes years 
prior to that, if we are to turn the tide of this disease.  
 
Because of its powerful message, the story of William Utermohlen has been told many 
times, from documentaries like L'oeil de Verre (2009) to exhibitions by the Wellcome trust 
and publication in The Lancet. By visualising the inescapable deterioration in his series of 
self-portraits, Utermohlen has left us an urgent reminder that the development of 
preventive strategies against dementia deserves our utmost dedication.  



G E N E R A L  I N T R O D U C T I O N  
 

3 
 

Chapter 1.  

General introduction  

Chapter 1
General introduction



G E N E R A L  I N T R O D U C T I O N  
 

3 
 

Chapter 1.  

General introduction  

Chapter 1
General introduction



C H A P T E R  1  
 

4 
 

  

G E N E R A L  I N T R O D U C T I O N  
 

5 
 

GE NERAL  INTRODU CTION  
 
Across the animal kingdom, the ability to acquire, process, and retrieve information allows 
to adapt to the environment, and for selected organisms the environment to their needs. 
Whether of our own making, or due to inevitable hazards of inhabiting this planet, the 
environment has always had a huge impact on the state of our brain, our mind, and our 
cognitive ability. Eighty-six billion neurons,1 surrounded by an equal number of glial cells,2 
shape an interconnected network in our brain, so refined that it requires decades of 
environmental exposure, along with genetic susceptibility, to make it falter to the level of 
our awareness. But once it does, the consequences are atrocious. From subtle word finding 
difficulties to lost perception of time; from forgetfulness for a dentist appointment to a 
failure to recognise even those closest at heart.  
 
At present, 48 million people worldwide are living with dementia, of whom the majority with 
Alzheimer’s disease as its most common subtype. Due to ageing of the population, this 
number is predicted to double by 2040 (Figure 1). The immense burden of the disease not 
only falls upon the many patients, but is shared by countless caregivers, and a wider societal 
cost surpassing the $1 trillion mark in 2018. In the Netherlands, 1.5% of the population – 
250,000 people – live with dementia, which despite strenuous efforts of roughly 300,000 
caregivers, takes up about 7% (€5 billion) of the entire health care budget. The projections of 
rapid increases in the socio-economic burden of disease have led to widespread calls for 
prioritising dementia on the health agenda, with focus on prevention as the key to curbing 
this epidemic.3-5 However, despite the overwhelming concern for global health, dementia 
remains understudied in terms of prevention at the population level,6,7 and underfunded 
compared to other common high-burden conditions such as cancer and heart disease.8 
Recent years have seen a surge in investment in dementia research, but compared to other 
major common diseases, there is a substantial lag to overcome (Figure 2).  
 
Most dementia research to date has focused on single pathophysiological mechanisms at the 
individual level. This has provided insights in specific biological pathways, but has been 
insufficient to provide an understanding of the full spectrum of dementia in the population. 
Indeed, the successive failure of various trials investigating potential disease-modifying 
treatments9,10 suggests that the paradigm of a single target mechanism does not work well 
outside of the controlled laboratory and clinical environment. This multifactorial nature of 
dementia commonly emerges from population-based studies that have pinpointed various, 
mostly cardiovascular determinants of dementia in the general population. Together, 
modifiable risk factors like mid-life obesity, hypertension, and smoking account for 
roundabout 30% of dementia incidence,4,5 but yet again, the underlying mechanisms by 
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which these risk factors lead to neurodegeneration remain elusive. The aim of this 
dissertation is to explore specific areas that I deem of aetiological importance to dementia, 
without losing sight of the full spectrum of the disease. After providing a bird’s eye 
perspective of the occurrence of disease in Chapter 2, I shall therefore zoom in on cerebral 
haemodynamic mechanisms in Chapter 3, the interplay between dementia and 
cardiovascular disease in Chapter 4, and the role of the apolipoprotein E gene (APOE) in 
dementia and wider health outcomes in Chapter 5. As may become clear from the further 
presentation of these topics below, the thread by which this thesis is tied together is the 
aforementioned importance of prevention. This applies to clinical dementia, as well as the 
slowing of cognitive decline in innumerable spouses, parents, and otherwise engaged elderly 
who are prone to cognitive impairment that may not qualify as dementia, but certainly 
suffices to interfere with everyday undertakings, joy and quality of life, and mutual 
understanding with loved ones. For these reasons, throughout this dissertation my focus will 
be on dementia almost as much as it is on this subclinical decline in cognitive ability. In order 
to do so, the work presented in this thesis draws exclusively from population-based cohort 
studies, notably the Rotterdam Study, which I will therefore introduce in more detail. 
 
 

 
Figure 1. The number of people living with dementia in millions (black box) per geographic area in 2015 (light 
grey), with projections for 2030 (dark blue) and 2050 (dark grey). Corresponding percentages increase 
compared to 2015 are depicted in the red labels. Data source: World Alzheimer Report, 2015.  
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Figure 2. The number of scientific publications per year for different areas of research. Numbers are obtained 
from the PubMed library. 
 
 

The Rotterdam Study, locally known as Erasmus Rotterdam Gezondheid Onderzoek (ERGO), 
was established in 1989 to investigate the occurrence and determinants of common diseases 
in the elderly.11 Designed as a geographically defined population-based cohort, the study 
keeps track of over 15,000 inhabitants, aged 40 years and older, of the Ommoord suburb of 
Rotterdam. Through four-yearly research centre visits, and permission to continuously 
monitor their health status through general practitioner records, these loyal and dedicated 
people have now allowed careful study of neurological disease and heart disease, in addition 
to a variety of other organ systems for nearly three decades (Figure 3).12 Although the 
Rotterdam Study at time of its inception was certainly not the first of its kind, it was one of 
the few studies with a focus on neurodegenerative disease. The relevance of this is quickly 
appreciated when viewing the scarcity of dementia research at the time, compared to for 
example heart disease and cancer (Figure 2). The 28 years of follow-up that have since been 
amassed render the Rotterdam Study a valuable tool to map the burden of disease, and 
unravel the long pre-clinical course of dementia.13 Of note, the Rotterdam Study has been 
approved by the medical ethics committee according to the Population Screening Act 
Rotterdam Study, as executed by the Ministry of Health, Welfare and Sports of the 
Netherlands. Written informed consent was obtained from all its participants. 
 
Data from the Rotterdam Study are yielded first in Chapter 2 to provide estimates of the 
occurrence and burden of dementia based on 27 years of observations in the Dutch 
population, which may serve public awareness and informed decision-making by policy 
makers alike. The healthcare adaptations needed to prepare for the increasing burden of 
disease thereby not only depend on the risk of developing dementia, but equally on the 
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Figure 3. Design of the Rotterdam Study, showing all examination cycles to date of the four inclusion waves. 
 

 
(expected) number of years lived with disease in the context of overall life expectancy. For 
this reason, in Chapter 2, I describe both lifetime risks of dementia, in the context of other 
common brain diseases, and the expected number of years lived with dementia. Although 
these estimates originate from careful observations, it is important to note that projections 
for the future may vary with changes in disease incidence. Such time trends are therefore 
investigated in Chapter 2, by clustering observations from five European countries and the 
United States. I conclude this chapter by providing a glimpse of the preventive potential for 
dementia by interventions at the population level. 
 
In Chapter 3 of this thesis I shall investigate essentially one aetiological question: is 
disruption of blood supply to the brain an important factor in the pathogenesis of dementia? 
It has long been acknowledged that abrupt, severe hypoxia, leading to ischaemic stroke, 
greatly increases one’s chances of developing dementia.14 But most of the exposure to 
cerebral blood flow reduction, and potentially hypoxia, is transient and may go by 
unnoticed. The brain is a highly vascularised organ, receiving 15% of cardiac output and 
accounting for about 20% of the body’s total oxygen consumption despite comprising less 
than 3% of body weight.15 Their large metabolic demand renders neurons sensitive to 
disruption in nutrient supply, which is why several regulatory mechanisms are in place to 
maintain continuous cerebral perfusion. Despite this delicate equilibrium, however, the 
consequences of transient episodes or chronic stages of reduced cerebral perfusion on 
neurodegeneration and cognitive decline remain largely undetermined. These are 
complicated by the fact that the loss of neuronal cells reduces metabolic demand, and 
consequently blood supply, long before the brain falters to the level of clinical dementia. 
Long-term observations are therefore needed, founded firmly upon the principles of 
cerebral haemodynamic physiology.  
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In physiological conditions, cerebral blood flow (CBF) is proportional to the cerebral 
metabolic rate, and in resting state equals about 50-60 mL per 100mL of brain tissue per 
minute. Haemodynamically, CBF is a resultant of the cerebral perfusion pressure (CPP) and 

the cerebrovascular resistance (CVR) (as expressed by Ohm’s law:    ).16 The CPP is 

the pressure gradient that drives cerebral blood flow, depending on mean arterial pressure 

(MAP) and intracranial pressure (ICP) (  ). The arterial pressure component is 

determined by the cardiac output, systemic vascular resistance, and central venous pressure 
(CVP) (  ).17 Compared to regular MAP of around 95 mmHg, ICP is 
relatively low under physiological circumstances (7-15 mmHg in supine position). 
Nevertheless, it modulates flow by constituting the interstitial pressure that limits capillary 
filtration from the intracranial capillaries, and to a lesser extent through compression of the 
cerebral vessels.  Regulation of CVR, however, is mostly under metabolic control (through 
hypercapnia and to a lesser extent hypoxia), supported by neural regulation (i.e. via release 
of vasoactive neurotransmitters), and myogenic control (i.e. changes in transmural 
pressure).18 As the ICP cannot be reliably determined non-invasively, it has often been 
attempted to estimate the CVR otherwise. Notable examples are the pulsatility index 

(  ) and the (highly correlated) restivity index (  ), 

which were coined by respectively Gosling and Pourcelot in the 1970s using transcranial 
Doppler.19,20 However, despite the usefulness of Gosling's index in assessing intracranial 
artery pulsatility, it may not capture well the CVR.21  
 
Cerebral perfusion pressure is held fairly constant due to various autoregulatory 
mechanisms that safeguard blood supply to the brain. These mechanisms rely both on 
autonomic nervous system function and cerebrovascular reactivity. The former includes 
chronotropic and inotropic effects on the heart and arterial and venous constriction due to 
effects on vascular smooth muscle cells, and influence variation in resting conditions as well 
as response to for example an orthostatic challenge. Within the brain, neurons, glia, and 
cerebral blood vessels function as an integrated unit to adjust blood supply to changes in 
metabolic demand, a process known as neurovascular coupling. This local vasoreactivity acts 
predominantly through changes in cerebrovascular resistance, and maintains cerebral blood 
flow as long as arterial pressure is within the range of about 60-150 mmHg. Below a certain 
perfusion pressure, however, the local autoregulatory mechanism falters, and cerebral blood 
flow starts to decline (Figure 4). To maintain neuronal metabolism, oxygen extraction then 
increases, which puts forward arterial oxygen content (i.e. haemoglobin concentrations and 
oxygen saturation) as a factor of importance in the development (and prevention) of 
neuronal hypoxia and ischaemia with drops in perfusion pressure.  
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Figure 4. Schematic overview of changes in metabolism with declining cerebral perfusion pressure. Protein 
synthesis gradually reduces from about 50% of its capacity with cerebral blood flow of 55mL/100mL/min to 
complete suppression at 35mL/100mL/min. With further lowering of perfusion electroencephalographic 
amplitudes start to decrease, and at about 15-20mL/100mL/min ATP breakdown is soon followed by anoxic 
depolarisation of cell membranes and disappearance of evoked potentials.22 
 
 
With these haemodynamic principles in mind, I investigate in Chapter 3 the long-term 
consequences of low cerebral perfusion, and of its regulatory mechanisms on the risk of 
dementia. This chapter concludes by assessing the effect of carotid artery stenosis on 
imaging markers of neurodegeneration. Chapter 4 subsequently focuses on the link between 
heart and brain, and probes potential haemodynamic or thromboembolic complications of 
heart disease on cognitive health, while exploring hallmarks of Alzheimer’s disease in light of 
systemic vascular disease. 
 
In Chapter 5, I shall direct attention to what is arguably the most notorious of risk factors for 
Alzheimer’s disease: The Apolipoprotein E (APOE) gene. Rarely in the realm of medicine does 
one encounter such an important common genetic risk factor. Since its implication in 
Alzheimer’s disease in 1993,23 much has been said and written about the role of APOE in 
dementia.24 However, the contemporary identification of APP and PSEN1/PSEN2 as 
autosomal dominant Alzheimer genes has undoubtedly framed much of the attention for 
APOE in the context of the amyloid hypothesis. This has in my view left various other 
systemic effects of APOE, notably involving lipid metabolism and atherosclerosis,25,26 
underappreciated, and the consequences of APOE on disease outside the central nervous 
system under-investigated. Moreover, the vast majority of research has focused on the high-
risk ε4 allele, with little attention for the apparent protective effects of the ε2 allele.27 This is 
partly driven by the lower allele frequency, approximating 8% for ε2 versus 78% for ε3 and 
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14% for ε4,28 necessitating sizeable study populations to disentangle effects of the ε2 from 
that of the ε3 allele.   
 
Apart from the aetiological insights that APOE offers, its substantial risk estimates render it a 
suitable candidate for risk prediction of dementia in the community.28 Reliable risk 
stratification is important for clinical decision-making, and has gained considerable interest 
in the selection of individuals for participation in clinical trials. However, available risk 
prediction models display poor calibration and show no better discriminative accuracy than 
prediction based on age alone.29 Yet, these models are chiefly based on demographics and 
environmental risk factors. Heritability of Alzheimer’s disease has been estimated as high as 
60-70% on the basis of twin studies,30 and although potentially still mediated by 
environmental factors, the high heritability suggests that genetic factors may be used to 
distinguish individuals at low and high risk of dementia in the population. Indeed, the 
hitherto identified common genetic risk variants seem to hold some promise for risk 
stratification, but validation of these results in prospective population-based studies is 
mandatory before these could be applied in clinical setting. Moreover, given that much of 
the heritability of Alzheimer’s disease remains yet unexplained, it would be unwise to omit a 
classic family history of dementia from patient interview and investigation, and possibly 
incorporation in prediction rules. In Chapter 5 I shall therefore investigate the effect of 
APOE, and in particular the ε2 allele, on lipid fractions and mortality risk in the population, 
and yield genetic determinants of dementia, including APOE along with other genetic 
variants and family history, for predictive purposes in the community. 
 
I aspire that this thesis will ultimately provide a few answers, and above all a clearer picture 
of the questions lying before us. To wander a short distance down that road, I shall reflect on 
the content of this thesis and share my views on its implications in Chapter 6. Take these 
contemplations as an invitation for further debate, for the end of any journey is just the 
beginning of another, and it is beyond doubt that scientific debate will be much needed if we 
are to achieve the full potential for prevention of dementia. 
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ABSTRACT 
 
Various cross-sectional studies have reported lower cerebral perfusion in patients with mild 
cognitive impairment and dementia than in healthy controls, but the temporal relationship 
of these findings is under debate. Hypoperfusion may contribute to neurodegeneration by 
inducing neuronal energy crisis, but conversely loss of brain tissue can lead to reduced 
perfusion as metabolic demand decreases. We therefore prospectively determined the 
association of cerebral perfusion with subsequent cognitive decline and development of 
dementia. Between 2005 and 2012, we measured cerebral blood flow by 2D phase-contrast 
magnetic resonance imaging in non-demented participants of the population-based 
Rotterdam Study. We determined the association of cerebral perfusion (mL/100mL/minute) 
with risk of dementia (until 2015) using a Cox model, adjusting for age, sex, demographics, 
cardiovascular risk factors, and APOE genotype. We repeated analyses for Alzheimer’s 
disease, and accounting for stroke. We furthermore determined change in cognitive 
performance during two consecutive examination rounds in relation to perfusion using 
linear regression, and investigated whether associations were modified by baseline severity 
of white matter hyperintensities (WMH). Of 4,759 participants (median age 61 years, 55% 
women) with a median follow-up of 6.9 years, 123 participants developed dementia (97 
Alzheimer’s disease). Lower cerebral perfusion was associated with higher risk of dementia 
(adjusted HR [95%CI] per standard deviation decrease: 1.31 [1.07-1.61]), similar for 
Alzheimer’s disease only, and unaltered by accounting for stroke. Risk of dementia with 
hypoperfusion was higher with increasing severity of WMH (with severe WMH– HR 1.54 
[1.11-2.14]). At cognitive re-examination after on average 5.7 years, lower baseline 
perfusion was associated with accelerated decline in cognition (global cognition: β=-0.029, 
P=0.003), which was similar after excluding those with incident dementia, and again most 
profound in individuals with higher volume of WMH (P-interaction=0.019). In conclusion, 
cerebral hypoperfusion is associated with accelerated cognitive decline and an increased risk 
of dementia in the general population.  
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INTRODUCTION 
 
About 48 million people worldwide are living with dementia, and this number is predicted to 
increase to 131 million by 2050.1 Consequently, the social and economic burden of dementia 
will increase enormously, unless preventive or curative measures can be established. 
Vascular disease is an important contributor to dementia, including Alzheimer’s disease,2,3 
but the underlying pathophysiological mechanisms remain largely unknown. As vascular risk 
factors have an important effect on cerebral hemodynamics, cerebral hypoperfusion has 
been suggested as a potential link between vascular damage and dementia, and a potential 
target for preventive interventions.4,5 Various cross-sectional studies have indeed reported 
lower perfusion in patients with mild cognitive impairment or dementia,6-10 but the temporal 
relationship of these findings is debated.11,12 Hypoperfusion may contribute to 
neurodegeneration by inducing neuronal energy crisis, while conversely loss of brain tissue 
can lead to hypoperfusion due to reduced metabolic demand. In fact, we recently found in a 
large longitudinal imaging study that smaller brain volume precedes decline in cerebral 
blood flow, whereas conversely low flow was associated with accelerated brain atrophy in 
elderly individuals.13 Moreover, lower perfusion has been associated with more decline on 
the mini-mental state examination in the years preceding flow measurement,14 but to date 
no studies have determined risk of developing dementia after a baseline measurement of 
cerebral blood flow. 
 
Cerebral hypoperfusion has particularly been implicated in small-vessel disease, which is a 
major risk factor for dementia.15,16 Hypoperfusion is suggested to play an important role in 
the pathophysiology of small vessel disease through ischemia and inflammation.12,17 In 
addition, hypoperfusion may be particularly detrimental to neurons in the presence of 
capillary dysfunction or arteriolar disease, due to concomitant impaired vasoreactivity,18 
blood-brain barrier dysfunction,19 and less efficient extraction of oxygen and other diffusible 
nutrients.20 A cross-sectional study in patients with manifest arterial disease indeed found 
that hypoperfusion was particularly associated with worse executive function in the 
presence of more extensive white matter hyperintensities.21 However, whether this also 
applies to other cognitive domains or to associations with subsequent cognitive decline and 
development of dementia is unknown. 
 
In a prospective population-based cohort study, we aimed to determine the association of 
cerebral perfusion with subsequent cognitive decline and development of dementia, and to 
investigate whether this association varies with severity of small-vessel disease. 
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METHODS 
 
Study population 
This study is embedded within the Rotterdam Study, a large population-based cohort study 
in the Netherlands.22 The original study population consisted of 7,983 participants aged ≥55 
years from the Ommoord area, a suburb of Rotterdam. The cohort was subsequently 
expanded with 3,011 persons (≥55 years) in the year 2000, and an additional 3,932 persons 
(≥45 years) in 2005, thus including a total 14,926 participants in the cohort. From August 
2005 onwards, all participants without contraindications are invited for magnetic resonance 
imaging (MRI). Contraindications are presence of iron-based metal implants, other internal 
metallic objects, severe claustrophobia, recent surgery, or the inability to lie flat for the 
duration of the scan. The current study includes all eligible participants, who underwent 
baseline MRI between 2005 and 2012 (N=5,163; 88.3% of invitees).  
 
MRI scan protocol and image processing  
MRI of the brain was performed on a 1.5 T scanner (General Electric Healthcare, Milwaukee, 
WI, USA), using an 8-channel head coil.23 We acquired high-resolution axial T1-weighted 
sequence, proton-density-weighted (PD) sequence, and fluid attenuated inversion recovery 
(FLAIR) sequence. For flow measurement, 2D phase-contrast imaging was performed as 
described previously.24 In brief, a sagittal 2D phase-contrast angiographic scout image was 
performed. On this scout image, a transverse imaging plane perpendicular to both the pre-
cavernous portion of the internal carotid arteries and the middle part of the basilar artery 
was chosen for a 2D gradient-echo phase-contrast sequence (repetition time=20 ms, echo 
time=4 ms, field of view=19 cm2, matrix=256 × 160, flip angle=8°, number of excitations=8, 
bandwidth=22.73 kHz, velocity encoding=120 cm/sec, slice thickness=5 mm). Acquisition 
time was 51 seconds and no cardiac gating was performed.25  
 
Flow was calculated from the phase-contrast images using interactive data language-based 
custom software (Cinetool version 4; General Electric Healthcare). Two experienced 
technicians drew all the manual regions of interest and performed subsequent flow 
measurements (inter-rater correlations >0.94 for all vessels).24 This method for blood flow 
measurement was established in 1998,26 and subsequent reports have demonstrated good 
accuracy and reproducibility.24,25 Recently, phase contrast imaging has been shown to 
correlate well with arterial spin labelling (ASL) measures of cerebral perfusion,27,28 although 
absolute estimates tend to be higher than with ASL and somewhat more variable.27 For the 
assessment of brain volume, the structural MR sequences (T1-weighted, PD-weighted, and 
FLAIR) were transferred to a Linux workstation. Pre-processing steps and the classification 
algorithm have been described previously.29 Quantification of cerebrospinal fluid, 
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parenchymal volume, and white matter hyperintensity (WHM) volume were done using an 
automated tissue segmentation method, based on a k-nearest-neighbor brain tissue 
classifier algorithm.29 All segmentation results were visually inspected and if needed 
manually corrected. We calculated total brain perfusion (mL/min per 100 mL) by dividing 
total cerebral blood flow (mL/min) by each individual's brain volume (mL) and multiplying 
the result by 100. All scans were rated by trained research physicians, blinded to clinical 
data, for the presence of cerebral microbleeds (defined as small round to ovoid areas of 
focal signal loss on T2 susceptibility-weighted images), cortical infarcts, and lacunar infarcts 
(defined as focal lesions ≥3 and <15mm in size with similar signal intensity as cerebrospinal 
fluid and, when located supratentorially, a hyperintense rim on FLAIR). 
 
Cognitive function assessment 
Cognitive function was assessed in detail at baseline and follow-up with a 
neuropsychological test battery comprising the letter-digit substitution task (LDST, number 
of correct digits in 1 minute), the verbal fluency test (VF, animal categories), the Stroop test 
(error-adjusted time in seconds), a 15-word learning test (WLT, immediate and delayed 
recall), and Purdue pegboard task.30 For each participant, Z-scores were calculated for each 
test separately, by dividing the difference between individual test score and mean test score 
by the standard deviation. We derived scores on cognitive domains for memory (WLT), 
information processing (Stroop reading and color naming task, and LDST (weighted half)), 
executive function (Stroop interference task, VF, and LDST (weighted half)), and motor 
function (Purdue pegboard test). To obtain a measure of global cognitive function, we 
furthermore calculated a standardized compound score (g-factor) using principal component 
analysis, including each of the cognitive tests described above.30 The g-factor explained 
47.4% of the variance in cognitive test scores in the population. The average interval 
between baseline assessment and re-examination was 5.7 years, limiting any practice 
effects.  
 
Dementia screening and surveillance 
Participants were screened for dementia at baseline and subsequent centre visits using the 
Mini-Mental State Examination (MMSE) and the Geriatric Mental State Schedule (GMS) 
organic level.31 Those with MMSE<26 or GMS>0 underwent further investigation and 
informant interview including the Cambridge Examination for Mental Disorders of the 
Elderly. Additionally, the entire cohort was continuously under surveillance for dementia 
through electronic linkage of the study centre with medical records from general 
practitioners and the regional institute for outpatient mental healthcare. Available clinical 
neuroimaging data were reviewed when required for diagnosis of dementia subtype. A 
consensus panel led by a consultant neurologist established the final diagnosis according to 
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standard criteria for dementia (DSM-III-R), and Alzheimer’s disease (NINCDS-ADRDA). 
Follow-up until January 2015 was virtually complete (96.1% of potential person-years). 
Participants were censored within this follow-up period at date of dementia diagnosis, 
death, or last follow-up, whichever came first. 
 
Other measurements 
We assessed educational attainment (classified into lower, further, and higher education), 
civil status, residential situation (i.e. independent or with care), history of smoking (i.e. 
current, former, never) and use of antihypertensive or lipid-lowering medication at baseline 
by interview. Systolic and diastolic blood pressures were measured twice on the right arm 
with a random-zero sphygmomanometer; the mean of these readings was used for analyses. 
Mean arterial pressure was calculated by the sum of diastolic pressure and one-third times 
the difference between systolic and diastolic pressure. Fasting serum lipid levels were 
measured at baseline. Diabetes was defined as the use of blood glucose-lowering medication 
at baseline or a fasting serum glucose level ≥126 mg/dL. Body mass index was computed 
from measurements of height and weight (kg/m2). Carotid stenosis (≥50%) was assessed by 
Doppler ultrasound. History of stroke was assessed at baseline by interview and verified 
using medical records, and participants were continuously monitored for occurrence of 
incident stroke through computerized linkage of medical records from general practitioners 
and nursing home physicians with the study database. Ethnicity was determined from 
genotype. APOE genotype was determined by polymerase chain reaction on coded DNA 
samples in the original cohort, and by bi-allelic TaqMan assays (rs7412 and rs429358) for the 
expansion cohorts. In 177 participants with missing APOE  status from this blood sampling, 
genotype was determined by genetic imputation (Illumina 610K and 660K chip; imputation 
with Haplotype Reference Consortium (HRC) reference panel (v1.0) with Minimac 3). Overall, 
APOE genotype was determined in 97.6% of participants, and classified into homozygote ε3 
carriers, ε2 carriers (i.e. ε2/2 and ε2/3), and ε4 carriers (i.e. ε2/4, ε3/4 and ε4/4).  
 
Analysis 
Analyses included all non-demented participants who underwent MRI. Missing covariate 
data (maximum 10%) were imputed using 5-fold multiple imputation with an iterative 
Markov chain Monte Carlo method, based on determinant, outcome and included 
covariates. Distribution of covariates was similar in the imputed vs. non-imputed dataset.  
 
We first determined the association between various cardiovascular risk factors and baseline 
cerebral perfusion by using linear regression. We then assessed change in cognitive test 
scores between examination rounds in relation to perfusion, using linear regression with test 
score at re-examination as the dependent variable, while adjusting for baseline test score, 
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age, age2, sex, educational attainment, ethnicity, household income, smoking, mean arterial 
pressure, antihypertensive drugs, serum total cholesterol and high-density lipoprotein, lipid-
lowering drugs, diabetes, body mass index, and APOE genotype. We repeated these analyses 
stratified by median age (61.3 years), and after exclusion of participants who were 
diagnosed with dementia prior to the repeated cognitive assessment. Finally, we assessed 
effect modification by WMH volume for global cognition and separate cognitive domains. To 
avoid overfitting of the models in the latter stratified analyses, adjustment for covariates 
other than baseline test score, age, and sex was done by means of propensity scores. 
 
Next, we determined the association of cerebral perfusion with incident dementia, using Cox 
proportional hazard models. The proportional hazard assumption was met. We assessed risk 
of dementia per quartile of cerebral perfusion, as well as continuously per standard 
deviation (SD) decrease, thereby assessing for non-linearity with restricted cubic splines. All 
analyses were adjusted for age, age2 and sex. We verified that age was sufficiently controlled 
for by comparing results with those from a model using cubic splines, and repeating the 
analyses with age rather than follow-up time as the time-scale. To minimize confounding by 
cardiovascular disease, in a second model we further adjusted for smoking history, mean 
arterial pressure, use of antihypertensive medication, serum total cholesterol and high-
density lipoprotein, use of lipid-lowering medication, diabetes, body-mass index, and APOE 
genotype. In this model we furthermore controlled for ethnicity, educational attainment, 
civil status, and living condition. We repeated the analyses, 1) assessing Alzheimer’s disease 
only, 2) excluding all participants with prior clinical stroke or MRI defined cortical infarct at 
baseline, while censoring for incident clinical stroke during follow-up, 3) with delayed entry 
after 1, 2, 3, and 4 years from baseline, and 4) excluding participants with carotid artery 
stenosis >50%. In addition, we examined potential mediation by small-vessel disease, by 
further adjusting for MRI markers of cerebral small vessel disease (i.e. WMH volume, 
cerebral microbleeds, and lacunar infarcts). Finally, we explored effect modification by age, 
sex, baseline levels of mean arterial pressure, and WMH volume at baseline, by stratifying 
analyses and testing for multiplicative interaction (entering perfusion and WMH volume as 
continuous variables in the model). Propensity scores were again used to avoid overfitting of 
the models in the stratified analyses. We visualized the association between perfusion and 
dementia by mean arterial pressure, creating 3D mesh plots (using negative exponential 
smoothing, 2nd degree polynomial, and nearest neighbor bandwidth method). 
 
Analyses were done using SPSS Statistics version 23.0 (IBM Corp, Armonk, NY, USA), apart 
from analyses using splines and age as a time-scale for which we used R statistical software 
version 3.1.1 (packages ‘rms’ and ‘survival’). 3D mesh plots were created using SigmaPlot 
version 8.0 (Systat Software, San Jose, CA). Alpha-level (type 1 error) was set at 0.05. 
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RESULTS 
 
Of 5,010 eligible participants, no reliable measure of cerebral blood flow could be obtained 
in 58 (1.2%) persons, due to incorrect positioning of the phase-contrast imaging plane. In 
addition, parenchymal volume computations were unreliable in 193 (3.9%) participants, due 
to inadequate quality of obtained images, thus leaving a total of 4,759 (95.0%) individuals for 
analysis. Baseline characteristics of participants are presented in Table 1. 
 

Characteristics Study population 

(N=4,759) 

With cognitive         
re-examination 

(N=3,700) 

No cognitive      
re-examination 

(N=1,059) 

Age, years 63.7 (±10.8) 62.2 (±9.7) 69.1 (±12.8) 
Female sex 2625 (55.2%) 2031 (54.9%) 565 (56.1%) 
Caucasian ethnicity  4156 (97.3%) 3219 (97.0%) 891 (98.5%) 
Smoking    
    Former 2300 (48.6%) 1807 (49.1%) 474 (47.4%) 
    Current 995 (21.0%) 731 (19.9%) 249 (24.9%) 
Systolic blood pressure, mmHg 139 (±21) 138 (±20) 143 (±23) 
Diastolic blood pressure, mmHg 82 (±11) 82 (±11) 82 (±12) 
Mean arterial pressure, mmHg 101 (±13) 101 (±13) 102 (±14) 
Antihypertensive medication 1616 (34.2%) 1130 (30.8%) 462 (46.2%) 
Cholesterol, mg/dL 215 (±41) 216 (±41) 211 (±41) 
HDL cholesterol, mg/dL 56 (±16) 56 (±16) 54 (±15) 
Lipid lowering medication 1129 (23.9%) 848 (23.1%) 267 (26.7%) 
Diabetes 519 (11.1%) 368 (10.1%) 146 (14.9%) 
Body-mass index, kg/m2 27.4 (±4.2) 27.5 (±4.1) 27.4 (±4.4) 
Educational attainment    
    Lower 2180 (46.2%) 1621 (44.2%) 531 (53.1%) 
    Further 1440 (30.5%) 1129 (30.8%) 295 (29.5%) 
    Higher 1100 (23.3%) 918 (25.0%) 174 (17.4%) 
Civil status    
    Living with spouse or partner 3540 (74.8%) 2870 (77.9%) 636 (63.7%) 
    Widowed, divorced, or never married 1191 (25.2%) 813 (22.1%) 363 (36.3%) 
Residential care 270 (5.7%) 155 (4.2%) 110 (11.0%) 
APOE genotype    
    ε3/ε3 2726 (58.7%) 2127 (58.8%) 574 (58.8%) 
    ε2/ε2 or ε2/ε3 604 (13.0%) 472 (13.0%) 122 (12.5%) 
    ε2/ε4, ε3/ε4, or ε4/ε4 1315 (28.3%) 1020 (28.2%) 281 (28.8%) 
Carotid artery stenosis (≥50%) 208 (4.4%) 112 (3.1%) 91 (9.2%) 
Cerebral perfusion,  mL/100mL/min 56.3 (±9.7) 56.7 (±9.5) 54.9 (±10.1) 

Table 1. Baseline characteristics. Values are depicted as mean±SD for continuous variables, and absolute 
numbers (%) for categorical variables. N=sample size; APOE=apolipoprotein E; SD=standard deviation 

 
Cerebral perfusion was lower with advancing age, and lower in men compared with women 
(Table 2). Most cardiovascular risk factors were individually associated with perfusion at 
baseline, whereas after adjustment for other risk factors associations with use of 
antihypertensive medication, cholesterol level, and current smoking remained statistically 
significant (Table 2).  
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Of 4,707 participants (98.9%) who underwent detailed cognitive assessment at baseline, 
3,700 (78.6%) had repeated assessment at follow-up (mean interval 5.7 years). Lower 
cerebral perfusion at baseline was associated with accelerated decline in global cognition, 
particularly in memory and executive function (Table 3). Across domains, effect estimates for 
perfusion increased with increasing severity of white matter hyperintensities (WMH) (P-
value for interaction of perfusion and WMH with respect to global cognition=0.019; Figure 
1). Associations were also stronger in older compared with younger participants (P-value for 
interaction=0.018; Table 3). Results were similar when excluding participants who were 
diagnosed with dementia prior to cognitive re-assessment (β [95% CI] for global cognition: -
0.029 [-0.048;-0.010]). 
 
 

Determinant  
Effect on cerebral perfusion 

Model I (β, 95% CI) Model II (β, 95% CI) 

Age, per 10 years -0.217 (-0.243;-0.192) -0.189 (-0.216;-0.162) 
Female sex 0.425 (0.371;0.479) 0.419 (0.358;0.479) 
Hypertension‡ -0.104 (-0.161;-0.047) n/a 
       Mean arterial pressure, per 10mmHg  -0.015 (-0.037;0.006) 0.001 (-0.021;0.023) 
       Systolic blood pressure, per 10mmHg  -0.013 (-0.028;0.001) n/a 
       Diastolic blood pressure, per 10mmHg  -0.010 (-0.035;0.015) n/a 
Anti-hypertensive medication -0.151 (-0.211;-0.092) -0.120 (-0.185;-0.055) 
Smoking   
       Never REFERENCE REFERENCE 
       Former -0.058 (-0.122;0.006) -0.053 (-0.117;0.010) 
       Current 0.129 (0.051;0.207) 0.132 (0.053;0.210) 
Total cholesterol, per 1mmol/L  -0.019 (-0.045;0.008) -0.044 (-0.072;-0.015) 
HDL cholesterol, per 1mmol/L  0.088 (0.017;0.158) 0.068 (-0.008;0.144) 
Lipid-lowering medication -0.083 (-0.147;-0.019) -0.061 (-0.130;0.009) 
Diabetes  -0.092 (-0.180;-0.004) -0.053 (-0.145;0.038) 
Body mass index, per 5 points  -0.061 (-0.094;-0.028) -0.025 (-0.062;0.012) 

Table 2. Determinants of cerebral perfusion. Model I is adjusted for age and sex, if applicable, whereas all 
presented variables are included in model II. ‡ blood pressure ≥160/90 or use of anti-hypertensive medication 
CI=confidence interval; n/a=not applicable. Values reflect standardised regression coefficient with 95% CI.  
 

 

 All participants              
β for change (95% CI) 

Age <61 years          
β for change (95% CI) 

Age ≥61 years           
β for change (95% CI) 

Global cognition -0.029 (-0.048;-0.010) -0.010 (-0.032;0.013) -0.056 (-0.089;-0.022) 
    Memory  -0.031 (-0.056;-0.006) -0.013 (-0.045;0.019) -0.047 (-0.086;-0.008) 
    Information processing  -0.007 (-0.024;0.009) 0.003 (-0.017;0.023) -0.020 (-0.047;0.007) 
    Executive function -0.017 (-0.033;-0.001) -0.013 (-0.032;0.007) -0.025 (-0.052;0.002) 
    Motor function -0.001 (-0.026;0.027) 0.014 (-0.026;0.055) -0.025 (-0.051;0.001) 

Table 3. Cerebral perfusion and change in cognitive test performance. Betas represent the effect of cerebral 
perfusion per SD decrease on standardized cognitive test score at follow-up examination, adjusted for baseline 
cognitive test score. Results are stratified by the median age of 61.3 years. The model is adjusted for age, sex, 
educational attainment, ethnicity, civil status, residential care, smoking, mean arterial pressure, 
antihypertensive drugs, serum total cholesterol and high-density lipoprotein, lipid-lowering drugs, diabetes, 
body mass index, and APOE genotype. CI=confidence interval; SD=standard deviation.  
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Body-mass index, kg/m2 27.4 (±4.2) 27.5 (±4.1) 27.4 (±4.4) 
Educational attainment    
    Lower 2180 (46.2%) 1621 (44.2%) 531 (53.1%) 
    Further 1440 (30.5%) 1129 (30.8%) 295 (29.5%) 
    Higher 1100 (23.3%) 918 (25.0%) 174 (17.4%) 
Civil status    
    Living with spouse or partner 3540 (74.8%) 2870 (77.9%) 636 (63.7%) 
    Widowed, divorced, or never married 1191 (25.2%) 813 (22.1%) 363 (36.3%) 
Residential care 270 (5.7%) 155 (4.2%) 110 (11.0%) 
APOE genotype    
    ε3/ε3 2726 (58.7%) 2127 (58.8%) 574 (58.8%) 
    ε2/ε2 or ε2/ε3 604 (13.0%) 472 (13.0%) 122 (12.5%) 
    ε2/ε4, ε3/ε4, or ε4/ε4 1315 (28.3%) 1020 (28.2%) 281 (28.8%) 
Carotid artery stenosis (≥50%) 208 (4.4%) 112 (3.1%) 91 (9.2%) 
Cerebral perfusion,  mL/100mL/min 56.3 (±9.7) 56.7 (±9.5) 54.9 (±10.1) 

Table 1. Baseline characteristics. Values are depicted as mean±SD for continuous variables, and absolute 
numbers (%) for categorical variables. N=sample size; APOE=apolipoprotein E; SD=standard deviation 

 
Cerebral perfusion was lower with advancing age, and lower in men compared with women 
(Table 2). Most cardiovascular risk factors were individually associated with perfusion at 
baseline, whereas after adjustment for other risk factors associations with use of 
antihypertensive medication, cholesterol level, and current smoking remained statistically 
significant (Table 2).  
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Of 4,707 participants (98.9%) who underwent detailed cognitive assessment at baseline, 
3,700 (78.6%) had repeated assessment at follow-up (mean interval 5.7 years). Lower 
cerebral perfusion at baseline was associated with accelerated decline in global cognition, 
particularly in memory and executive function (Table 3). Across domains, effect estimates for 
perfusion increased with increasing severity of white matter hyperintensities (WMH) (P-
value for interaction of perfusion and WMH with respect to global cognition=0.019; Figure 
1). Associations were also stronger in older compared with younger participants (P-value for 
interaction=0.018; Table 3). Results were similar when excluding participants who were 
diagnosed with dementia prior to cognitive re-assessment (β [95% CI] for global cognition: -
0.029 [-0.048;-0.010]). 
 
 

Determinant  
Effect on cerebral perfusion 

Model I (β, 95% CI) Model II (β, 95% CI) 

Age, per 10 years -0.217 (-0.243;-0.192) -0.189 (-0.216;-0.162) 
Female sex 0.425 (0.371;0.479) 0.419 (0.358;0.479) 
Hypertension‡ -0.104 (-0.161;-0.047) n/a 
       Mean arterial pressure, per 10mmHg  -0.015 (-0.037;0.006) 0.001 (-0.021;0.023) 
       Systolic blood pressure, per 10mmHg  -0.013 (-0.028;0.001) n/a 
       Diastolic blood pressure, per 10mmHg  -0.010 (-0.035;0.015) n/a 
Anti-hypertensive medication -0.151 (-0.211;-0.092) -0.120 (-0.185;-0.055) 
Smoking   
       Never REFERENCE REFERENCE 
       Former -0.058 (-0.122;0.006) -0.053 (-0.117;0.010) 
       Current 0.129 (0.051;0.207) 0.132 (0.053;0.210) 
Total cholesterol, per 1mmol/L  -0.019 (-0.045;0.008) -0.044 (-0.072;-0.015) 
HDL cholesterol, per 1mmol/L  0.088 (0.017;0.158) 0.068 (-0.008;0.144) 
Lipid-lowering medication -0.083 (-0.147;-0.019) -0.061 (-0.130;0.009) 
Diabetes  -0.092 (-0.180;-0.004) -0.053 (-0.145;0.038) 
Body mass index, per 5 points  -0.061 (-0.094;-0.028) -0.025 (-0.062;0.012) 

Table 2. Determinants of cerebral perfusion. Model I is adjusted for age and sex, if applicable, whereas all 
presented variables are included in model II. ‡ blood pressure ≥160/90 or use of anti-hypertensive medication 
CI=confidence interval; n/a=not applicable. Values reflect standardised regression coefficient with 95% CI.  
 

 

 All participants              
β for change (95% CI) 

Age <61 years          
β for change (95% CI) 

Age ≥61 years           
β for change (95% CI) 

Global cognition -0.029 (-0.048;-0.010) -0.010 (-0.032;0.013) -0.056 (-0.089;-0.022) 
    Memory  -0.031 (-0.056;-0.006) -0.013 (-0.045;0.019) -0.047 (-0.086;-0.008) 
    Information processing  -0.007 (-0.024;0.009) 0.003 (-0.017;0.023) -0.020 (-0.047;0.007) 
    Executive function -0.017 (-0.033;-0.001) -0.013 (-0.032;0.007) -0.025 (-0.052;0.002) 
    Motor function -0.001 (-0.026;0.027) 0.014 (-0.026;0.055) -0.025 (-0.051;0.001) 

Table 3. Cerebral perfusion and change in cognitive test performance. Betas represent the effect of cerebral 
perfusion per SD decrease on standardized cognitive test score at follow-up examination, adjusted for baseline 
cognitive test score. Results are stratified by the median age of 61.3 years. The model is adjusted for age, sex, 
educational attainment, ethnicity, civil status, residential care, smoking, mean arterial pressure, 
antihypertensive drugs, serum total cholesterol and high-density lipoprotein, lipid-lowering drugs, diabetes, 
body mass index, and APOE genotype. CI=confidence interval; SD=standard deviation.  
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Figure 1. Cerebral perfusion and change in cognitive performance by severity of white matter 
hyperintensities. Results are presented for global cognition and each of the separate cognitive domains. 
Moving right along the x-axis limits the included population to those with at least the specified volume of white 
matter hyperintensities on baseline MRI (ranging from the full sample of 4,759 individuals with ≥0mL to a 
sample of 163 individuals with ≥30mL). Each dot represents the estimated change in cognitive test 
performance per 1 standard deviation increase in perfusion in this specified population. CI=confidence interval 

 
 

During a mean follow-up time of 6.9 years, 123 individuals developed dementia, of whom 97 
(78.9%) had Alzheimer’s disease. Follow-up for dementia was virtually complete for all 4759 
participants (96.1% of potential person years). Of incident dementia cases, 25 were 
preceded by a clinical stroke or had evidence of cortical infarction on baseline MRI. 
 
Lower cerebral perfusion at baseline was associated with a higher risk of dementia (adjusted 
HR [95% CI] per SD decrease: 1.31 [1.07-1.61]), with similar effect estimates for Alzheimer’s 
disease (Table 4). There was no evidence of non-linearity in the association between 
perfusion and dementia. Results were unaffected by excluding prevalent stroke and 
censoring at time of incident stroke (HR 1.33, 1.06-1.68). Analyses with delayed study entry, 
excluding the first year of follow-up resulted in mildly reduced estimates, which remained 
grossly stable with additional exclusion of the 2nd, 3rd, and 4th year of follow-up (HRs 1.26, 
1.24, 1.21, and 1.25, respectively). Overall effect estimates were mildly attenuated after 
excluding participants with ≥50% carotid artery stenosis (HR 1.23 [0.99-1.53]), and when 
adjusting for MRI markers of small vessel disease (HR 1.25 [1.02-1.54]; Table 5).  
 
The association between cerebral perfusion and risk of dementia was more profound with 
increasing burden of WMH on MRI (Table 5 – with severe WMH: HR 1.54 [1.11-2.14]), 
although a formal test for multiplicative interaction was not statistically significant (P=0.24). 
This trend was unaltered by excluding all 222 participants with prior stroke or infarcts on 
MRI at baseline. In addition, dementia risk estimates for low perfusion were higher in those 
with higher blood pressure levels at baseline (Figure 2 – P-value for interaction with mean 
arterial pressure = 0.039).  This trend was consistently seen for systolic and diastolic pressure 
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(Figure 3A), and persisted after additional adjustment for WMH volume. There was no effect 
modification of the association between cerebral perfusion and dementia risk by age or sex. 
 

 
Figure 2. Cerebral perfusion and dementia risk by baseline blood pressure levels (A), and 3D-graphically 
depicted for mean arterial pressure (B). MAP=mean arterial pressure; SBP=systolic blood pressure; 
DBP=diastolic blood pressure; CI=confidence interval 
 
 

DISCUSSION 
 
In this large population-based study, we found that lower cerebral perfusion at baseline was 
associated with accelerated cognitive decline and higher risk of developing dementia during 
on average 7 years of follow-up. These associations were most profound in individuals with 
higher volume of white matter hyperintensities (WMH) or higher mean arterial pressure.  
 
Prior studies have almost invariably shown associations of hypoperfusion with mild cognitive 
impairment and Alzheimer’s disease in cross-sectional studies,6-9 and more rapid decline in 
cognition after diagnosis of dementia in a longitudinal study.10 Lower perfusion is often 
attributed to neurodegeneration, and can indicate neuronal dysfunction and synaptic failure. 
The first signs of neurodegeneration are likely to occur years prior to diagnosis of dementia, 
and cerebral perfusion may consequently fall well before clinical symptoms of dementia 
arise. Nevertheless, our findings show that the association of perfusion with cognitive 
decline extends well into the pre-symptomatic phase of the disease, and could therefore 
precede and contribute to neuronal cell loss and neurodegeneration also. Both sides of this 
medal are supported by a recent longitudinal imaging study, in which smaller brain volume 
not only precipitated decline in cerebral blood flow, but low flow also predisposed to 
accelerated brain atrophy in elderly individuals.13 In line with these findings, we found 
strongest associations of hypoperfusion with cognitive decline in those over 60 years of age, 
which extended to individuals who did not (yet) develop dementia.  
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Various potential underlying mechanisms can link hypoxia to (neuronal) cell death, many of 
which are related to activation of hypoxia-inducible transcription factors (HIF). HIF can lead 
to increased expression of various inflammatory cytokines,32 and the subsequent activation 
of microglia,33 release of pro-inflammatory neurotoxic factors, and oxidative stress may 
explain part of the observed link between neuro-inflammation and Alzheimer’s disease.34 
HIF furthermore renders endothelial cells responsive to various proangiogenic factors, as 
seen in the white matter of patients with Alzheimer’s disease.35 These proangiogenic factors 
are important for maintaining blood-brain barrier integrity through regulating endothelial 
cell and pericyte function in angiogenesis,36 and dysfunction of these vital components of 
the neurovascular unit has been implicated in neurodegeneration with Alzheimer’s 
disease.36 Moreover, hypoxia can result in aberrant angiogenesis and microvascular 
degeneration in humans via pathways that are associated with advanced vascular 
degeneration and poor β-amyloid clearance in mice.37 Cerebral blood flow correlates with 
amyloid burden across the spectrum from cognitively healthy to Alzheimer’s disease,38 which 
could be in part consequential, and in part contributing to impaired amyloid clearance. 
Certain areas in the brain, such as the metabolically highly active hippocampi, may be 
particularly vulnerable to hypoxia, which could explain their role in early Alzheimer’s 
disease,39 and the marked associations we found with memory function in our study. Future 
studies may focus more specifically on such regions, refine insight in these pathways, and 
investigate whether cerebral perfusion or hypoxia mediates associations of for instance 
heart failure and atrial fibrillation with dementia.  
 
Hypoperfusion is widely implicated in the etiology of cerebral small-vessel disease, but once 
again the temporality of the association is under debate.12,17,40 The mild attenuation of risk 
estimates by adjusting for markers of cerebral small-vessel disease in our study may in that 
respect reflect confounding or partial mediation of the association between hypoperfusion 
and dementia by small-vessel disease. In addition, small-vessel  disease may modify an effect 
of hypoperfusion on neuronal cell loss. In line with a prior cross-sectional study of executive 
functioning,21 we observed stronger associations in individuals with higher degree of WMH 
at baseline. WMH have been related to blood brain barrier permeability,41 diminished 
vasoreactivity,42 and a state of impaired extraction of oxygen and other nutrients, in which 
hypoperfusion could be especially hazardous to meeting metabolic demand.20 Diminished 
blood-brain barrier function may render amyloid clearance more dependent on interstitial 
bulk flow,43 while in mouse models of Alzheimer’s disease, vascular dysfunction and 
hypoperfusion lead to impaired drainage of interstitial fluid and β-amyloid clearance.44 Of 
particular relevance to brain tissue, encased as it is by the skull, is its low interstitial 
compliance, causing small increases in interstitial volume to lead to large increases in 
interstitial pressure. Consequently, increases in arterial pressure may be required to 
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Various potential underlying mechanisms can link hypoxia to (neuronal) cell death, many of 
which are related to activation of hypoxia-inducible transcription factors (HIF). HIF can lead 
to increased expression of various inflammatory cytokines,32 and the subsequent activation 
of microglia,33 release of pro-inflammatory neurotoxic factors, and oxidative stress may 
explain part of the observed link between neuro-inflammation and Alzheimer’s disease.34 
HIF furthermore renders endothelial cells responsive to various proangiogenic factors, as 
seen in the white matter of patients with Alzheimer’s disease.35 These proangiogenic factors 
are important for maintaining blood-brain barrier integrity through regulating endothelial 
cell and pericyte function in angiogenesis,36 and dysfunction of these vital components of 
the neurovascular unit has been implicated in neurodegeneration with Alzheimer’s 
disease.36 Moreover, hypoxia can result in aberrant angiogenesis and microvascular 
degeneration in humans via pathways that are associated with advanced vascular 
degeneration and poor β-amyloid clearance in mice.37 Cerebral blood flow correlates with 
amyloid burden across the spectrum from cognitively healthy to Alzheimer’s disease,38 which 
could be in part consequential, and in part contributing to impaired amyloid clearance. 
Certain areas in the brain, such as the metabolically highly active hippocampi, may be 
particularly vulnerable to hypoxia, which could explain their role in early Alzheimer’s 
disease,39 and the marked associations we found with memory function in our study. Future 
studies may focus more specifically on such regions, refine insight in these pathways, and 
investigate whether cerebral perfusion or hypoxia mediates associations of for instance 
heart failure and atrial fibrillation with dementia.  
 
Hypoperfusion is widely implicated in the etiology of cerebral small-vessel disease, but once 
again the temporality of the association is under debate.12,17,40 The mild attenuation of risk 
estimates by adjusting for markers of cerebral small-vessel disease in our study may in that 
respect reflect confounding or partial mediation of the association between hypoperfusion 
and dementia by small-vessel disease. In addition, small-vessel  disease may modify an effect 
of hypoperfusion on neuronal cell loss. In line with a prior cross-sectional study of executive 
functioning,21 we observed stronger associations in individuals with higher degree of WMH 
at baseline. WMH have been related to blood brain barrier permeability,41 diminished 
vasoreactivity,42 and a state of impaired extraction of oxygen and other nutrients, in which 
hypoperfusion could be especially hazardous to meeting metabolic demand.20 Diminished 
blood-brain barrier function may render amyloid clearance more dependent on interstitial 
bulk flow,43 while in mouse models of Alzheimer’s disease, vascular dysfunction and 
hypoperfusion lead to impaired drainage of interstitial fluid and β-amyloid clearance.44 Of 
particular relevance to brain tissue, encased as it is by the skull, is its low interstitial 
compliance, causing small increases in interstitial volume to lead to large increases in 
interstitial pressure. Consequently, increases in arterial pressure may be required to 
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maintain the hydrostatic pressure gradient and fluid filtration. This might underlie the 
observed interaction between perfusion and arterial blood pressure in our study. Yet, high 
blood pressures may also reflect longstanding hypertension and its detrimental 
consequences on (micro)vascular integrity and function.45 The potential interplay between 
blood pressure, arteriolar and capillary dysfunction, and neuronal hypoxia warrants further 
investigation. Of note, somewhat counterintuitively, hyperperfusion might also lead to lower 
oxygen extraction in the presence of relatively mild-moderate capillary dysfunction, 
requiring suppression of blood flow to optimize metabolism.46 In those individuals, perfusion 
may be reduced as a mechanism to optimize oxygen extraction. Repeated scan data in 
future studies may aid to further explore this possibility.  
 
Although we believe our findings are valid, there are certain limitations to our study to take 
into account. First, 2D phase contrast flow measurement does not allow region specific 
assessment of cerebral perfusion, which is likely more sensitive in detecting associations 
with cognitive decline. Also, we could not differentiate between grey and white matter 
perfusion. Although phase contrast imaging measures of perfusion correlate well with 
ASL,27,28 absolute estimates tend to be higher and somewhat more variable.27 Such a 
systematic deviation would however not influence obtained relative risks, and a larger 
variability would only lead to dilution of effect estimates. Second, we could not measure 
cerebellar blood flow, as flow in the basilar artery was measured distally of the posterior and 
anterior inferior cerebellar arteries. Third, although follow-up for dementia was near-
complete (96%), attrition for cognitive re-examination was substantial (21%). As those lost to 
follow-up were older, had worse risk profiles, and lower cerebral perfusion, this most likely 
led to an underestimation of the association of perfusion with decline in test performance. 
Response rate to MRI invitation in our study was 88.3%, and non-participants were also 
older than those who did undergo brain imaging. Fourth, given the long pre-symptomatic 
phase of dementia the median 7 years of follow-up is still relatively short, and we therefore 
cannot completely rule out reverse causation. Finally, the vast majority of our population is 
of European ancestry, potentially limiting generalizability to other ethnicities. 
 
In conclusion, cerebral hypoperfusion is associated with accelerated cognitive decline and 
increased risk of dementia in the general population. These findings support a role of 
cerebral hypoperfusion in the pathophysiology of dementia. Further studies are warranted 
to unravel mechanisms in relation to blood pressure and small vessel disease, and assess the 
potential of cerebral perfusion as a target for prevention of cognitive decline. 
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ABSTRACT 
 
Orthostatic hypotension is a common cause of transient cerebral hypoperfusion in the 
population. Hypoperfusion and hypoxia are implicated in the pathophysiology of cognitive 
decline, but whether orthostatic hypotension predisposes to dementia is uncertain. Between 
1990 and 1993, we assessed orthostatic hypotension in 6,204 non-demented, stroke-free 
participants of the population-based Rotterdam Study (mean age 69 years, 60% female). 
Orthostatic hypotension was defined as a ≥20mmHg drop in systolic or ≥10mmHg drop in 
diastolic blood pressure within 3 minutes from postural change. We furthermore calculated 
within subject variability in systolic blood pressure (SBP) related to postural change, 
expressed as the coefficient of variation (CV). We determined the risk of dementia (until 
2014) in relation to orthostatic hypotension and SBP variability, using a Cox regression 
model, adjusted for age, sex, cardiovascular risk factors, relevant medication, and 
apolipoprotein E genotype. Finally, we explored whether associations varied according to 
the compensatory rise in heart rate. During a median follow-up of 15.3 years, 1176 
participants developed dementia, of whom 935 (79.5%) had Alzheimer’s disease and 95 
(8.1%) vascular dementia. Orthostatic hypotension was associated with an increased risk of 
dementia (HR [95% confidence interval]: 1.15 [1.00-1.34]), comparable for Alzheimer’s 
disease and vascular dementia. Similarly, greater SBP variability with postural change was 
associated with an increased risk of dementia (HR [95% CI] per standard deviation increase: 
1.08 [1.01-1.16]), extending to participants who did not meet the formal criteria for 
orthostatic hypotension (HR 1.08 [1.00-1.17]). The risk of dementia was particularly 
increased in those with orthostatic hypotension who lacked compensatory increase in heart 
rate (within lowest quartile of heart rate response: HR 1.39 [1.04-1.85]; P-interaction=0.05). 
In conclusion, orthostatic blood pressure drops are associated with an increase in the long-
term risk of dementia in the general population. 
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INTRODUCTION 
 
Cardiovascular health is now well-established as a key determinant in the prevention of 
dementia, including Alzheimer’s disease,1,2 but the mechanisms by which vascular damage 
leads to cognitive decline remain largely unknown. As cerebral hypoperfusion is widely 
implicated in dementia,3,4 cerebral haemodynamics have been suggested as a potential link 
between vascular risk factors and dementia.5 Two important mechanisms for maintenance 
of proper and continuous cerebral perfusion are local vasoreactivity and autonomous 
nervous system function. Cerebral vasoreactivity has indeed been associated with the risk of 
developing dementia in the general population,6 but the role of autonomous nervous system 
function in the onset of dementia has been less well-studied. 
 
Autonomic dysfunction may result in orthostatic hypotension, which affects 20-30% of the 
elderly population.7,8 Orthostatic hypotension is characterised by a marked drop in blood 
pressure following postural change, insufficiently compensated for by sympathetic and 
parasympathetic mechanisms. This may elicit transient (cerebral) hypoperfusion, especially 
in the absence of compensatory increase in heart rate. Orthostatic hypotension is associated 
with an increased risk of cardiovascular events, stroke, and mortality.9 Moreover, orthostatic 
hypotension is highly prevalent among patients with dementia and mild cognitive 
impairment, compared to healthy controls,10-13 but only one study assessed the longitudinal 
relation between orthostatic hypotension and the risk of dementia in initially healthy 
participants. In this Swedish population, orthostatic hypotension was associated with an 
increased risk of having dementia at re-examination after 6 years, but the investigators were 
unable to adjust for (cardiovascular) risk factors aside hypertension, and attrition was 
substantial with 37.5% of participants lost to follow-up between examination rounds.14 
These limited data regarding orthostatic hypotension and cognition prompted a recent 
review and meta-analysis to conclude that longitudinal studies using standardised criteria 
are needed to elucidate whether orthostatic hypotension is an independent risk factor for 
developing dementia.9,15 We therefore aimed to determine the association between 
orthostatic hypotension and the risk of dementia in a long-term population-based study. 
 
 
METHODS 
 
Study population 
This study is embedded within the Rotterdam Study, a large ongoing population-based 
cohort study in the Netherlands, with an initial study population of 7983 participants (78% of 
invitees) aged ≥55 years from the Ommoord area, a suburb of Rotterdam. The Rotterdam 
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Study methods have been described in detail previously.16 In brief, participants were 
interviewed at home and examined at the research centre for baseline assessment from 
1990 to 1993. Until 2015, five follow-up examinations have been carried out. Orthostatic 
hypotension was determined during baseline assessment. Of 7,983 participants, 7,157 
(89.7%) visited the research centre for physical examination.  
 
Assessment of orthostatic blood pressure change 
Blood pressure and heart rate were measured using an automatic recorder (Dinamap R, 
Tampa, FL). The baseline blood pressure reading was the mean of two measurements on the 
right upper arm with the subject in supine position after 5 minutes of rest. Measurements 
were repeated in the standing position after 1, 2, and 3 minutes. Orthostatic hypotension 
was defined as ≥20mmHg decrease in systolic blood pressure or ≥10mmHg decrease in 
diastolic blood pressure after postural change at any of the three measurements, in 
accordance with the Consensus Committee of the American Autonomic Society and the 
American Academy of Neurology.17,18 We defined severity of orthostatic hypotension by 
degree of blood pressure drop, i.e. ≥20/10 but <30/15, ≥30/15 but <40/20, and ≥40/20 
mmHg. We calculated continuous measures of blood pressure change in response to 
postural change, expressed as the coefficient of variation of within subject variability (CV), 
defined as the ratio of the standard deviation to the mean of all measurements (i.e. 
measurements in supine and upright position combined). Furthermore, we determined the 
maximum increase in heart rate within 3 minutes after postural change, and asked 
participants directly afterwards whether they had felt unwell following postural change. 
 
Dementia screening and surveillance 
Participants were screened for dementia at baseline and subsequent centre visits using the 
Mini-Mental State Examination (MMSE) and the Geriatric Mental Schedule (GMS) organic 
level.19 Those with MMSE<26 or GMS>0 underwent further investigation and informant 
interview including the Cambridge Examination for Mental Disorders of the Elderly. 
Additionally, the entire cohort was continuously under surveillance for dementia through 
electronic linkage of the study centre with medical records from general practitioners and 
the regional institute for outpatient mental healthcare. Available clinical neuroimaging data 
were reviewed when required for diagnosis of dementia subtype. A consensus panel headed 
by a consultant neurologist established the final diagnosis according to standard criteria for 
dementia (DSM-III-R), and Alzheimer’s disease (NINCDS-ADRDA), and vascular dementia 
(NINDS-AIREN). Follow-up until 1st January 2014 was near-complete (94.0% of potential 
person years), and participants were censored within this follow-up period at date of 
dementia diagnosis, death, loss to follow-up, or 1st January 2014, whichever came first. 
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Other measurements 
We assessed smoking habits (i.e. current, former, never), alcohol intake, and baseline use of 
antihypertensive or anticholinergic medication by interview. Anti-cholinergic medication 
included anti-psychotic and anti-depressant medication, but also drugs prescribed against 
parkinsonism, urinary incontinence, or obstructive pulmonary disease that can have 
anticholinergic side-effects. Fasting serum lipid levels were measured at baseline. 
Hypertension was defined as the use of antihypertensive medication and/or elevated 
systolic or diastolic blood pressure (>140/90 mmHg). Body mass index was computed from 
measurements of height and weight (kg/m2). Diabetes was defined as the use of blood 
glucose-lowering medication at baseline or a random serum glucose level ≥11.1 mmol/L.20 
Myocardial infarction and atrial fibrillation were assessed by interview and presence of 
abnormalities on a 12-lead electrocardiogram. Heart failure was determined using a 
validated score, similar to the definition of the European Society of Cardiology.21 APOE 
genotype was determined using polymerase chain reaction on coded DNA samples. 
 
Analysis 
Analyses included all non-demented, stroke-free participants attending the study centre for 
examination. Of 7,157 participants attending the study centre, 531 were ineligible due to 
prevalent dementia (n=312), stroke (n=168), or both (n=51). Missing covariate data 
(maximum 17.6%), excluding APOE genotype, were imputed using fivefold multiple 
imputation, based on determinant (presence of orthostatic hypotension and postural 
systolic blood pressure variability), outcome and included covariates. Distribution of 
covariates was similar in the imputed versus non-imputed dataset.  
 
We determined the association between presence of orthostatic hypotension and incident 
dementia, using Cox proportional hazard models. We repeated the analysis with dementia 
and death as the joint outcome measure, to reduce selection due to competing risk. 
Subsequently, we analysed categories of increasing severity of orthostatic blood pressure 
drops, and orthostatic hypotension with and without feeling unwell. Because of right-
skewedness, we performed a natural logarithmic transformation of systolic blood pressure 
variability to obtain a roughly normal distribution (mean -2.52, standard deviation 0.58). Z-
scores were computed by dividing the difference between the individual value and the 
population mean by the population standard deviation. We determined the association 
between blood pressure variability related to postural change per quartile and continuously 
per standard deviation increase, using a Cox model. To eliminate a paradoxical impact of 
high blood pressure variability in those with excessive increases, we repeated analyses after 
excluding those with ≥20mmHg systolic or ≥10mmHg diastolic increase in blood pressure 
within 3 minutes. Furthermore, we determined whether associations extended to those 
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(89.7%) visited the research centre for physical examination.  
 
Assessment of orthostatic blood pressure change 
Blood pressure and heart rate were measured using an automatic recorder (Dinamap R, 
Tampa, FL). The baseline blood pressure reading was the mean of two measurements on the 
right upper arm with the subject in supine position after 5 minutes of rest. Measurements 
were repeated in the standing position after 1, 2, and 3 minutes. Orthostatic hypotension 
was defined as ≥20mmHg decrease in systolic blood pressure or ≥10mmHg decrease in 
diastolic blood pressure after postural change at any of the three measurements, in 
accordance with the Consensus Committee of the American Autonomic Society and the 
American Academy of Neurology.17,18 We defined severity of orthostatic hypotension by 
degree of blood pressure drop, i.e. ≥20/10 but <30/15, ≥30/15 but <40/20, and ≥40/20 
mmHg. We calculated continuous measures of blood pressure change in response to 
postural change, expressed as the coefficient of variation of within subject variability (CV), 
defined as the ratio of the standard deviation to the mean of all measurements (i.e. 
measurements in supine and upright position combined). Furthermore, we determined the 
maximum increase in heart rate within 3 minutes after postural change, and asked 
participants directly afterwards whether they had felt unwell following postural change. 
 
Dementia screening and surveillance 
Participants were screened for dementia at baseline and subsequent centre visits using the 
Mini-Mental State Examination (MMSE) and the Geriatric Mental Schedule (GMS) organic 
level.19 Those with MMSE<26 or GMS>0 underwent further investigation and informant 
interview including the Cambridge Examination for Mental Disorders of the Elderly. 
Additionally, the entire cohort was continuously under surveillance for dementia through 
electronic linkage of the study centre with medical records from general practitioners and 
the regional institute for outpatient mental healthcare. Available clinical neuroimaging data 
were reviewed when required for diagnosis of dementia subtype. A consensus panel headed 
by a consultant neurologist established the final diagnosis according to standard criteria for 
dementia (DSM-III-R), and Alzheimer’s disease (NINCDS-ADRDA), and vascular dementia 
(NINDS-AIREN). Follow-up until 1st January 2014 was near-complete (94.0% of potential 
person years), and participants were censored within this follow-up period at date of 
dementia diagnosis, death, loss to follow-up, or 1st January 2014, whichever came first. 
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Other measurements 
We assessed smoking habits (i.e. current, former, never), alcohol intake, and baseline use of 
antihypertensive or anticholinergic medication by interview. Anti-cholinergic medication 
included anti-psychotic and anti-depressant medication, but also drugs prescribed against 
parkinsonism, urinary incontinence, or obstructive pulmonary disease that can have 
anticholinergic side-effects. Fasting serum lipid levels were measured at baseline. 
Hypertension was defined as the use of antihypertensive medication and/or elevated 
systolic or diastolic blood pressure (>140/90 mmHg). Body mass index was computed from 
measurements of height and weight (kg/m2). Diabetes was defined as the use of blood 
glucose-lowering medication at baseline or a random serum glucose level ≥11.1 mmol/L.20 
Myocardial infarction and atrial fibrillation were assessed by interview and presence of 
abnormalities on a 12-lead electrocardiogram. Heart failure was determined using a 
validated score, similar to the definition of the European Society of Cardiology.21 APOE 
genotype was determined using polymerase chain reaction on coded DNA samples. 
 
Analysis 
Analyses included all non-demented, stroke-free participants attending the study centre for 
examination. Of 7,157 participants attending the study centre, 531 were ineligible due to 
prevalent dementia (n=312), stroke (n=168), or both (n=51). Missing covariate data 
(maximum 17.6%), excluding APOE genotype, were imputed using fivefold multiple 
imputation, based on determinant (presence of orthostatic hypotension and postural 
systolic blood pressure variability), outcome and included covariates. Distribution of 
covariates was similar in the imputed versus non-imputed dataset.  
 
We determined the association between presence of orthostatic hypotension and incident 
dementia, using Cox proportional hazard models. We repeated the analysis with dementia 
and death as the joint outcome measure, to reduce selection due to competing risk. 
Subsequently, we analysed categories of increasing severity of orthostatic blood pressure 
drops, and orthostatic hypotension with and without feeling unwell. Because of right-
skewedness, we performed a natural logarithmic transformation of systolic blood pressure 
variability to obtain a roughly normal distribution (mean -2.52, standard deviation 0.58). Z-
scores were computed by dividing the difference between the individual value and the 
population mean by the population standard deviation. We determined the association 
between blood pressure variability related to postural change per quartile and continuously 
per standard deviation increase, using a Cox model. To eliminate a paradoxical impact of 
high blood pressure variability in those with excessive increases, we repeated analyses after 
excluding those with ≥20mmHg systolic or ≥10mmHg diastolic increase in blood pressure 
within 3 minutes. Furthermore, we determined whether associations extended to those 
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without a formal diagnosis of orthostatic hypotension. We then assessed whether the risk of 
dementia in relation to orthostatic blood pressure drops was modified by response in heart 
rate after postural change, by testing for multiplicative interaction in the above Cox model 
and providing risk estimates of orthostatic hypotension for dementia per quartile of 
response in heart rate. We verified that the proportional hazard assumption was not 
violated in these models by plotting the partial (Schoenfeld) residuals against follow-up time. 
All analyses were adjusted for age and sex, and additionally in a second model for smoking 
habits, alcohol intake, systolic and diastolic blood pressure, use of antihypertensive 
medication, ratio of serum total cholesterol to HDL cholesterol, use of lipid-lowering 
medication, diabetes, body mass index, anti-cholinergic medication, and APOE genotype.  
 
We repeated the analyses for Alzheimer’s disease and vascular dementia separately, after 
censoring participants at time of incident stroke, after excluding those with Parkinson’s 
disease at baseline, after excluding those with heart disease (i.e. coronary heart disease, 
heart failure, atrial fibrillation), and after excluding those with possible postural tachycardia 
syndrome (defined as a ≥30 beats per minute increase in heart rate, or any heart rate of 
≥120 beats per minute). Finally, we performed several sensitivity analyses: 1) for men and 
women separately, 2) for persons above and below the median age (68.5 years), 3) excluding 
the first 5 years of follow-up to assess for reverse causality, 4) for those with and without 
heart failure at baseline, 5) for those with and without a history of hypertension, 6) 
distinguishing use of anti-hypertensive drugs, and 7) for those with and without diabetes.  
 
All analyses were done using IBM SPSS Statistics version 23.0 (IBM Corp, Armonk, NY, USA). 
Alpha (type 1 error) was set at 0.05. 
 
 

RESULTS 
 
Of 6,626 eligible participants, 6,303 (95.1%) underwent examination for orthostatic 
hypotension. No baseline blood pressure measurement was obtained in 8 individuals, and no 
measurement after postural change in 91 individuals, leaving a total of 6,204 (93.6%) cases 
for analysis. Baseline characteristics of participants are shown in Table 1. 
 
Overall, 1,152/6,204 (18.6%) participants had orthostatic hypotension. The prevalence of 
orthostatic hypotension steeply increased with age, to 30.6% of those aged >75 years. 
Although prevalence in the elderly was similar for men and women, there was a slightly 
higher prevalence in women at younger ages (Figure 1). Of all patients with orthostatic 
hypotension, 160 (13.9%) reported feeling unwell along with their blood pressure drop. 
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Characteristics Study population 

Age 68.5 ±8.6 
Female sex 3704 (59.7) 
Systolic blood pressure (mmHg) 139 ±22 
Diastolic blood pressure (mmHg) 74 ±11 
Antihypertensive medication  1901 (30.7) 
Diabetes 421 (7.2) 
Body-mass index (kg/m2) 26.3 ±3.6 
Total cholesterol (mmol/L) 6.6 ±1.2 
HDL cholesterol (mmol/L) 1.4 ±0.4 
Lipid-lowering medication  150 (2.4) 
Smoking  
     Former 2495 (41.9) 
     Current 1257 (21.1) 
Alcohol intake (grams/day, median, IQR) 3.4 (0.2-14.8) 
Anti-cholinergic medication 1391 (22.4) 
APOE genotype  
    ε3/ε3 3457 (58.3) 
    ε2/ε2, ε2/ε3, or ε2/ε4 978 (16.4) 
    ε3/ε4 or ε4/ε4 1494 (25.3) 
Orthostatic hypotension 1152 (18.6) 
    ≥20/10 mmHg, but <30/15 mmHg 773 (12.5) 
    ≥30/15 mmHg, but <40/20 mmHg 239 (3.9) 
    ≥40/20 mmHg 140 (2.3) 
Blood pressure variability* (median, IQR) 0.08 (0.06-0.12) 

Table 1. Baseline characteristics of the 6,204 study participants. Non-imputed data presented as frequency 
(%) for categorical, and mean±standard deviation for continuous variables, unless indicated otherwise; 
IQR=interquartile range; *expressed as coefficient of variation. 
 
 

 
Figure 1. Age-specific prevalence of orthostatic hypotension in men and women. 
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without a formal diagnosis of orthostatic hypotension. We then assessed whether the risk of 
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During a median follow-up time of 15.3 (IQR 8.3-20.8) years, 1,176 individuals developed 
dementia, of whom 935 (79.5%) were diagnosed with Alzheimer’s disease, 95 (8.1%) 
vascular dementia, 43 (3.7%) Parkinson’s dementia, 30 (2.6%) another type of dementia, and 
in 73 (6.2%) no definite subdiagnosis could be made. Of all incident dementia cases, 129 
were preceded by a stroke, a median 3.7 years (IQR 1.2-7.2) before diagnosis of dementia. 
  
Orthostatic hypotension at baseline was associated with an increased risk of dementia 
during follow-up (adjusted hazard ratio [95% confidence interval]: 1.15 [1.00-1.34], P=0.05; 
Table 2). Similarly on a continuous scale, variability in systolic blood pressure related to 
postural change was associated with an increased risk of dementia (HR per SD increase: 1.08 
[1.01-1.16], P=0.02). This association was similar when excluding those who fulfilled the 
formal criteria for orthostatic hypotension (HR 1.08 [1.00-1.17], P=0.06), and unaltered by 
excluding those with a marked increase in blood pressure following postural change (Table 
3). Results were similar for Alzheimer’s disease only. For vascular dementia, we observed 
higher risk estimates with orthostatic hypotension in an age- and sex-adjusted model (HR 
1.53 [0.97-2.43], P=0.07), but these were largely explained by cardiovascular risk factors, so 
that fully adjusted estimates were similar to those for Alzheimer’s disease (Table 2).  
 
We did not observe a clear exposure-response relation for severity of orthostatic 
hypotension, due to lower effect estimates for participants with the most severe blood 
pressure drops (Figure 2). In contrast, risk of dementia did strongly increase per quartile of 
blood pressure variability (Figure 2). Risk estimates were similar when modelling dementia 
with death as a joint outcome (adjusted HR [95% CI] for orthostatic hypotension: 1.17 [1.08-
1.27], P<0.001; and for blood pressure variability: 1.08 [1.04-1.12], P<0.001). Estimates for 
both orthostatic hypotension and systolic blood pressure variability were attenuated when 
incorporating these simultaneously in a model (adjusted HR [95% CI] for orthostatic 
hypotension: 1.07 [0.90-1.27], and for blood pressure variability: 1.06 [0.99-1.14]). 
 

 All-cause dementia 
Ndementia=1176 

Alzheimer’s disease 
Ndementia=935 

Vascular dementia 
Ndementia=95 

 HR (95% CI) HR (95% CI) HR (95% CI) 

Model I    
Orthostatic hypotension (yes versus no) 1.14 (0.99-1.31) 1.11 (0.95-1.30) 1.53 (0.97-2.43) 
Systolic blood pressure variability (per SD) 1.07 (1.00-1.14) 1.10 (1.03-1.18) 0.93 (0.76-1.13) 
    

Model II    
Orthostatic hypotension (yes versus no) 1.15 (1.00-1.34) 1.17 (0.99-1.37) 1.20 (0.73-1.96) 
Systolic blood pressure variability (per SD) 1.08 (1.01-1.16) 1.11 (1.04-1.20) 0.92 (0.76-1.13) 

Table 2. Orthostatic hypotension and risk of dementia. Model I is adjusted for age and sex, and model II 
additionally for blood pressure, antihypertensive medication, diabetes, total and HDL cholesterol, lipid-
lowering medication, smoking, alcohol consumption, anti-cholinergic medication, and APOE genotype. SD=per 
standard deviation increase in the coefficient of variation; HR=hazard ratio; CI=confidence interval. 
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Figure 2. The severity of orthostatic blood pressure changes. The risk of dementia is depicted by severity of 
the orthostatic blood pressure drop in mmHg (left), and per quartile of systolic blood pressure variability 
(right). 
 
 
 

SBP variability 
Participants without orthostatic 

hypotension 
HR (95% CI) 

Participants without strong blood 
pressure increase* 

HR (95% CI) 

Per quartile   
    Lowest quartile REFERENCE REFERENCE 
    2nd quartile 0.97 (0.80-1.17) 1.00 (0.82-1.21) 
    3rd quartile 1.18 (0.98-1.42) 1.14 (0.95-1.38) 
    Highest quartile 1.46 (1.18-1.81) 1.31 (1.09-1.57) 

Per standard deviation 1.08 (1.00-1.17) 1.08 (1.01-1.15) 

Table 3. Systolic blood pressure variability and dementia risk. Results are presented for the fully adjusted 
model. SBP=systolic blood pressure, with variability expressed as the coefficient of variation; HR=hazard ratio; 
CI=confidence interval; *Defined as ≥20mmHg systolic or ≥10mmHg diastolic increase. 
 

 

 
Figure 3. Heart rate response in orthostatic hypotension. The relative risk of dementia with orthostatic 
hypotension is presented by quartiles of orthostatic rise in heart rate. Bpm=beats per minute 
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Figure 3. Heart rate response in orthostatic hypotension. The relative risk of dementia with orthostatic 
hypotension is presented by quartiles of orthostatic rise in heart rate. Bpm=beats per minute 
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Results for orthostatic hypotension were similar for badly tolerated blood pressure drops 
(i.e. participants reported feeling unwell) compared to subjectively well-tolerated blood 
pressure drops (HR 1.20 [0.86-1.66] versus 1.15 [0.98-1.34], respectively). The risk of 
dementia related to orthostatic hypotension was most profound in participants who lacked 
compensatory increase in heart rate (within the lowest quartile of heart rate response: HR 
1.39 [1.04-1.85]; P-value for interaction = 0.05, Figure 3). This was similar after excluding all 
participants taking beta-blockers. 
 
Sensitivity analyses showed similar results after censoring for incident stroke, excluding 
participants with prevalent Parkinson’s disease, excluding those with possible postural 
tachycardia syndrome, or omitting the first 5 years of follow-up (Table 4). A history of 
hypertension or use of any antihypertensive medication did not modify the risk of dementia 
associated with orthostatic hypotension (Table 4). Amongst 177 participants with heart 
failure at baseline, risk estimates for orthostatic hypotension were higher than in those 
without heart failure, albeit not statistically significant (HR 1.52 [0.63-3.66]; P-value for 
interaction = 0.07).  
 
 
 Ndementia/Ntotal HR (95% CI) 

Censoring for incident stroke 1001/5929 1.18 (1.01-1.38) 
Excluding history of Parkinson’s disease 1076/5704 1.16 (1.00-1.35) 
Excluding history of heart disease* 946/5018 1.28 (1.09-1.50) 
Excluding possible postural tachycardia syndrome** 1104/5775 1.18 (1.02-1.37) 
Excluding the first 5 years of follow-up 882/5081 1.22 (1.03-1.44) 
Sex   
    Male 344/2415 1.04 (0.77-1.41) 
    Female 784/3514 1.19 (1.00-1.40) 
Age (stratified by median)   
    <68.5 years 388/3186 1.05 (0.78-1.41) 
    ≥68.5 years 740/2742 1.16 (0.98-1.38) 
Heart failure   
    No 1089/5685 1.13 (0.97-1.31) 
    Yes 30/177 1.52 (0.63-3.66) 
Hypertension   
    No 469/2674 1.22 (0.96-1.55) 
    Yes 657/3244 1.12 (0.93-1.36) 
Antihypertensive medication   
    None 768/4104 1.13 (0.94-1.36) 
    Any anti-hypertensive drug(s) 360/1825 1.15 (0.90-1.47) 
Diabetes   
    No 958/5018 1.12 (0.94-1.34) 
    Yes 170/911 1.35 (0.74-2.47) 

Table 4. Subgroup analyses for the risk with orthostatic hypotension. HR=hazard ratio; CI=confidence interval; 
* includes myocardial infarction, heart failure, and atrial fibrillation; ** defined as ≥30 beats per minute 
increase in heart rate, or any heart rate ≥120 beats per minute. Hazard ratios are presented for the fully 
adjusted model. 
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DISCUSSION 
 
In this large population-based study, orthostatic hypotension was present in nearly 1 in 5 
participants, and associated with a 15% increase in long-term risk of dementia. The risk of 
developing dementia was highest in those with orthostatic hypotension lacking 
compensatory increase in heart rate. Similarly, higher variability in blood pressure related to 
postural change, was associated with a higher risk of dementia, even in those persons 
without a formal diagnosis of orthostatic hypotension.  
 
Prevalence of orthostatic hypotension in our study was high, and increased steeply with age, 
in line with previous studies among community-dwelling individuals of similar age.7,8 A few 
studies have investigated orthostatic hypotension in relation to cognitive test performance. 
In the ARIC study, orthostatic hypotension was associated with decline on two cognitive 
tests, but this was largely explained by cardiovascular risk factors.22 Two smaller studies 
found no overall association between orthostatic hypotension and decline on the mini-
mental state examination after two years.7,23 Conversely, orthostatic hypotension was found 
to increase the risk of conversion from mild cognitive impairment to dementia after 3 
years,24 as well as the risk of dementia in patients with Parkinson’s disease.25 Only one other 
study has assessed the relation between orthostatic hypotension and the risk of dementia in 
initially healthy individuals. In a sample of 1480 individuals of the Swedish general 
population, OH was associated with the risk of having dementia at re-examination after 6 
years.14 However, study design hampered the use of survival models, or adjustment for 
(cardiovascular) risk factors aside hypertension, and attrition was substantial with 37.5% of 
participants lost to follow-up.14 We found orthostatic hypotension to be associated with 
long-term risk of dementia on continuous follow-up, independent of various other risk 
factors.  
 
The most apparent explanation for our findings is that orthostatic hypotension causes brain 
damage due to recurrent transient cerebral hypoperfusion. Autonomic nervous system 
function is responsible for maintaining continuous cerebral perfusion together with local 
vasoreactivity, which is also associated with dementia risk in the general population.6 Brief 
episodes of hypoperfusion, elicited by sudden blood pressure drops, may lead to hypoxia 
with detrimental effects on brain tissue via for instance neuroinflammation and oxidative 
stress.26 These mechanisms have been suggested of particular relevance in the pathogenesis 
of small-vessel disease,27 and orthostatic blood pressure drops in patients with dementia 
have been associated with deep white matter and basal ganglia hyperintensities,28 albeit not 
overall white matter lesion volume.29 The reduction in cerebral blood flow with autonomic 
failure has also been reported to predominantly affect the hippocampus,30 possibly linking 
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Results for orthostatic hypotension were similar for badly tolerated blood pressure drops 
(i.e. participants reported feeling unwell) compared to subjectively well-tolerated blood 
pressure drops (HR 1.20 [0.86-1.66] versus 1.15 [0.98-1.34], respectively). The risk of 
dementia related to orthostatic hypotension was most profound in participants who lacked 
compensatory increase in heart rate (within the lowest quartile of heart rate response: HR 
1.39 [1.04-1.85]; P-value for interaction = 0.05, Figure 3). This was similar after excluding all 
participants taking beta-blockers. 
 
Sensitivity analyses showed similar results after censoring for incident stroke, excluding 
participants with prevalent Parkinson’s disease, excluding those with possible postural 
tachycardia syndrome, or omitting the first 5 years of follow-up (Table 4). A history of 
hypertension or use of any antihypertensive medication did not modify the risk of dementia 
associated with orthostatic hypotension (Table 4). Amongst 177 participants with heart 
failure at baseline, risk estimates for orthostatic hypotension were higher than in those 
without heart failure, albeit not statistically significant (HR 1.52 [0.63-3.66]; P-value for 
interaction = 0.07).  
 
 
 Ndementia/Ntotal HR (95% CI) 

Censoring for incident stroke 1001/5929 1.18 (1.01-1.38) 
Excluding history of Parkinson’s disease 1076/5704 1.16 (1.00-1.35) 
Excluding history of heart disease* 946/5018 1.28 (1.09-1.50) 
Excluding possible postural tachycardia syndrome** 1104/5775 1.18 (1.02-1.37) 
Excluding the first 5 years of follow-up 882/5081 1.22 (1.03-1.44) 
Sex   
    Male 344/2415 1.04 (0.77-1.41) 
    Female 784/3514 1.19 (1.00-1.40) 
Age (stratified by median)   
    <68.5 years 388/3186 1.05 (0.78-1.41) 
    ≥68.5 years 740/2742 1.16 (0.98-1.38) 
Heart failure   
    No 1089/5685 1.13 (0.97-1.31) 
    Yes 30/177 1.52 (0.63-3.66) 
Hypertension   
    No 469/2674 1.22 (0.96-1.55) 
    Yes 657/3244 1.12 (0.93-1.36) 
Antihypertensive medication   
    None 768/4104 1.13 (0.94-1.36) 
    Any anti-hypertensive drug(s) 360/1825 1.15 (0.90-1.47) 
Diabetes   
    No 958/5018 1.12 (0.94-1.34) 
    Yes 170/911 1.35 (0.74-2.47) 

Table 4. Subgroup analyses for the risk with orthostatic hypotension. HR=hazard ratio; CI=confidence interval; 
* includes myocardial infarction, heart failure, and atrial fibrillation; ** defined as ≥30 beats per minute 
increase in heart rate, or any heart rate ≥120 beats per minute. Hazard ratios are presented for the fully 
adjusted model. 
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DISCUSSION 
 
In this large population-based study, orthostatic hypotension was present in nearly 1 in 5 
participants, and associated with a 15% increase in long-term risk of dementia. The risk of 
developing dementia was highest in those with orthostatic hypotension lacking 
compensatory increase in heart rate. Similarly, higher variability in blood pressure related to 
postural change, was associated with a higher risk of dementia, even in those persons 
without a formal diagnosis of orthostatic hypotension.  
 
Prevalence of orthostatic hypotension in our study was high, and increased steeply with age, 
in line with previous studies among community-dwelling individuals of similar age.7,8 A few 
studies have investigated orthostatic hypotension in relation to cognitive test performance. 
In the ARIC study, orthostatic hypotension was associated with decline on two cognitive 
tests, but this was largely explained by cardiovascular risk factors.22 Two smaller studies 
found no overall association between orthostatic hypotension and decline on the mini-
mental state examination after two years.7,23 Conversely, orthostatic hypotension was found 
to increase the risk of conversion from mild cognitive impairment to dementia after 3 
years,24 as well as the risk of dementia in patients with Parkinson’s disease.25 Only one other 
study has assessed the relation between orthostatic hypotension and the risk of dementia in 
initially healthy individuals. In a sample of 1480 individuals of the Swedish general 
population, OH was associated with the risk of having dementia at re-examination after 6 
years.14 However, study design hampered the use of survival models, or adjustment for 
(cardiovascular) risk factors aside hypertension, and attrition was substantial with 37.5% of 
participants lost to follow-up.14 We found orthostatic hypotension to be associated with 
long-term risk of dementia on continuous follow-up, independent of various other risk 
factors.  
 
The most apparent explanation for our findings is that orthostatic hypotension causes brain 
damage due to recurrent transient cerebral hypoperfusion. Autonomic nervous system 
function is responsible for maintaining continuous cerebral perfusion together with local 
vasoreactivity, which is also associated with dementia risk in the general population.6 Brief 
episodes of hypoperfusion, elicited by sudden blood pressure drops, may lead to hypoxia 
with detrimental effects on brain tissue via for instance neuroinflammation and oxidative 
stress.26 These mechanisms have been suggested of particular relevance in the pathogenesis 
of small-vessel disease,27 and orthostatic blood pressure drops in patients with dementia 
have been associated with deep white matter and basal ganglia hyperintensities,28 albeit not 
overall white matter lesion volume.29 The reduction in cerebral blood flow with autonomic 
failure has also been reported to predominantly affect the hippocampus,30 possibly linking 
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hypoperfusion to early Alzheimer’s pathology. Another potential explanation for our findings 
is that orthostatic hypotension serves as a marker of wider autonomic dysfunction. The 
extensive follow-up duration of our study limits the risk of reverse causation, but 
manifestations of autonomic dysfunction such as blood pressure variability,31,32 response to 
Valsalva manoeuvre,13,33 cardiovascular reflex and heart rate variability,34-36 and 30/15 
ratio,35 may be linked to dementia physiologically independent of orthostatic pressure 
changes. The similar associations with postural blood pressure variability in individuals 
without orthostatic hypotension in our study may in that context represent evidence of 
wider autonomic failure, as much as it could mean that only subtle blood pressure drops can 
be clinically meaningful in the long run. Similarly, the stronger risk estimates with limited to 
no heart rate increase, could point to physiological cerebral blood flow impairment, or again 
autonomic failure in general. Future studies are encouraged to incorporate various 
expressions of autonomic dysfunction measured in the same individuals simultaneously, 
both in observational setting for determining associated risks, as well as in intervention 
studies to disentangle the mechanisms, for example by assessing the cerebral 
haemodynamic consequences of orthostatic changes in blood pressure and heart rate using 
near-infrared spectroscopy or transcranial Doppler. 
 
The risk of dementia associated with orthostatic hypotension in our study was independent 
of how well blood pressure drops were tolerated by participants, and the vast majority of 
patients with orthostatic hypotension did not have symptoms during testing. This suggests 
that formal assessment of orthostatic hypotension is necessary to provide sufficient test 
sensitivity to be used in clinical practice. Hypotension might be harmful even without 
accompanying clinical symptoms such as light-headedness. This lack of symptoms with 
orthostasis was previously observed in patients with dementia,37 and may warrant caution in 
view of studies linking low blood pressure in late-life to cognitive decline and dementia.38 
Although for blood pressure variability we observed an exposure-response association, we 
did not find this for severity of orthostatic hypotension itself. As orthostatic hypotension is 
also associated with mortality,9 this may be attributable to competing risk, causing the most 
severely affected participants to die at a younger age, prior to developing dementia.  
 
Orthostatic hypotension most commonly arises due to autonomic dysfunction in the 
absence of neurological disease, but may be provoked by synucleinopathies (e.g. Parkinson’s 
disease), small fibre peripheral neuropathy, volume depletion (e.g. due to diuretics), and 
diminished cardiac pump function. In addition, several drugs can cause or aggravate 
orthostatic hypotension, including antihypertensive agents and antidepressants. Participants 
in our study with heart failure at baseline seemed particularly affected by orthostatic 
hypotension, possibly due to lack of compensatory increase in stroke volume. Orthostatic 
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hypotension has been associated with development of structural cardiac changes, including 
left ventricular hypertrophy,39 which may function as a mediator towards dementia.40 
However, the subgroup of participants with heart failure in our study was too small to draw 
any firm conclusions. We found similar associations between orthostatic hypotension and 
dementia after excluding those with Parkinson’s disease, and in users versus non-users of 
antihypertensive medication.  
 
Although we believe our findings are valid, there are certain limitations to our study to take 
into account. First, despite a 25-year follow-up period with similar risk estimates over time, 
subclinical brain changes leading to dementia occur years if not decades prior to onset of 
clinical symptoms, and we can therefore not completely rule out reverse causality 
influencing our findings. Second, despite adjustment for many potentially confounding 
factors, residual confounding may persist, in particular in case of prolonged exposure to risk 
factors since mid-life, which was not assessed. Third, we continued blood pressure 
measurements for up to three minutes after postural change, and while in line with 
international guidelines, this may have resulted in missed orthostatic blood pressure drops 
beyond this time window.41 However, any misclassification (i.e. missed diagnosis of 
orthostatic hypotension) would likely have led to underestimation of the true effect. Fourth, 
we were unable to adjust for the fact that orthostatic hypotension predisposes for falls, 
which may contribute to cognitive decline due to traumatic brain injury. Finally, the majority 
of our study population was of Caucasian descent, and findings may not be applicable to 
other ethnicities. 
 
In conclusion, orthostatic hypotension is associated with an increased risk of dementia in 
this population-based cohort. This supports an important role of maintaining continuous 
cerebral perfusion in the prevention of dementia. 
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ABSTRACT  
 
Cerebrovascular reactivity is a key factor in the regulation and maintenance of continuous 
cerebral perfusion. Impaired autoregulation may lead to transient episodes of hypoxia, with 
potential detrimental consequences to neuronal health. Several clinical studies have 
reported lower vasoreactivity in patients with dementia and mild cognitive impairment than 
in healthy controls, but whether impaired vasoreactivity predisposes  to the development of 
dementia is undetermined. We measured cerebrovascular reactivity in 1629 non-demented, 
stroke-free participants (mean age 71 years, 46% female) of the population-based 
Rotterdam Study, who underwent transcranial Doppler with induced hypercapnia between 
1997 and 1999. We used a Cox model to determine the risk of dementia, adjusted for age, 
sex, and cardiovascular risk factors including carotid intima-media thickness. We also 
determined change in cognitive test performance in relation to vasoreactivity, using linear 
mixed models. During a mean follow-up of 11.5 years, 209 participants were diagnosed with 
dementia, of whom 171 had Alzheimer’s disease. Higher vasoreactivity at baseline was 
associated with lower risk of dementia (hazard ratio [95% confidence interval] per standard 
deviation increase: 0.87 [0.75-1.00]), including Alzheimer’s disease (HR 0.84 [0.71-0.99]). 
Risk estimates were highest in individuals without hypertension (HR 0.69 [0.53-0.91] versus 
0.95 [0.79-1.14] in those with hypertension; P-value for interaction = 0.03). Participants with 
higher vasoreactivity performed better on cognitive tests at baseline (g-factor: β=0.063, 
P=0.007), but vasoreactivity was not associated with change in test performance during 
three consecutive assessments over 11 years of follow-up (g-factor: β=-0.021, P=0.34), 
irrespective of hypertensive status. In conclusion, impaired cerebrovascular reactivity is 
associated with an increased risk of dementia in the general population, suggesting that 
transient episodes of cerebral hypoxia due to failing autoregulation may contribute to the 
development of dementia.  
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INTRODUCTION 
 
Cardiovascular health is an important determinant in the prevention of dementia, including 
Alzheimer’s disease,1,2 but studies have thus far not been able to identify the key underlying 
pathways. The cerebral microvasculature is widely implicated in the disease process,3 but 
studies have generally relied on static markers of cerebrovascular pathology, such as small 
vessel disease on MRI, and insight in functional cerebral haemodynamics is therefore sparse. 
This is of particular relevance in light of recent studies linking (transient) changes in cerebral 
perfusion to dementia risk,4-7 suggesting cerebral autoregulatory mechanisms could be vital 
for neuronal function and survival. 
 
Cerebrovascular reactivity reflects the ability of the cerebral arterioles and capillaries to 
dilate in response to increased neuronal metabolic demand,8 and is largely responsible for 
maintenance of continuous cerebral perfusion. Quantified in vivo using transcranial Doppler 
or MRI, impaired vasoreactivity has been associated with (cardiovascular) mortality in the 
general population,9 and risk of stroke in the presence of flow-limiting carotid artery 
stenosis.10 Several small cross-sectional studies have furthermore found reduced 
cerebrovascular reactivity in patients with dementia or mild cognitive impairment compared 
to healthy controls,11-13 but its effect on cognitive decline and the risk of developing 
dementia is yet undetermined. We hypothesised that impaired cerebrovascular reactivity 
increases the risk of dementia, and aimed to determine the association of vasoreactivity 
with cognitive decline and dementia risk in a population-based study. 
 
 
METHODS 
 
Study population 
This study is embedded within the Rotterdam study, an ongoing population-based cohort 
study in the Netherlands, with an initial study population of 7,983 participants aged ≥55 
years from the Ommoord area, a suburb of Rotterdam. The Rotterdam study methods have 
been described previously.14 Briefly, participants were interviewed at home and 
subsequently examined at the research centre for baseline assessment from 1990 to 1993. 
Until 2013, four follow-up examinations have been carried out. Transcranial Doppler (TCD) 
investigation with induction of hypercapnia was added to the core protocol for the second 
follow-up examination, from July 1997 to December 1999. Of 5,990 survivors from the 
original cohort, 4,797 participated in this follow-up, of whom 4,215 visited the study centre 
for examination. Due to lack of technical support and personnel, cerebrovascular reactivity 
could be measured in a random subset of 2,731 of these participants.  
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Transcranial Doppler (TCD) assessment 
TCD monitoring was performed (Multi-Dop X-4; DWL, Sipplingen, Germany) and the cerebral 
blood flow velocity (cm/sec) was measured in the middle cerebral artery on both sides. End-
diastolic, peak systolic, and mean flow velocities were recorded automatically. End-tidal CO2 
pressure (kPa) was recorded continuously with a CO2 analyzer (Multinex; Datascope, 
Hoevelaken, the Netherlands). Cerebral CO2 vasoreactivity (CVR) was determined by 
continuous measurement of flow velocity in the middle cerebral artery, while participants 
breathed room air followed by 5% carbon dioxide inspiration through an anaesthetic mask 
for 2 minutes. CVR was defined as the percentage increase in flow velocity during inspiration 
of 5% CO2, divided by the absolute increase in end-tidal CO2 in the same period. We used the 
mean of right and left hemodynamic parameters for the analyses. In case of one-sided 
window absence, the contralateral parameters were used for analyses. Blood pressure was 
measured before and at the end of 5% CO2 inspiration, to adjust for mean arterial pressure 
related change in end-tidal CO2.  
 
Dementia screening and surveillance 
Participants were screened for dementia at baseline and subsequent centre visits using the 
Mini-Mental State Examination (MMSE) and the Geriatric Mental State Schedule (GMS) 
organic level.15 Those with MMSE<26 or GMS>0 underwent further investigation and 
informant interview including the Cambridge Examination for Mental Disorders of the 
Elderly. Additionally, the entire cohort was continuously under surveillance for dementia 
through electronic linkage of the study centre with medical records from general 
practitioners and the regional institute for outpatient mental healthcare. Available clinical 
neuroimaging data were reviewed when required for diagnosis of dementia subtype. A 
consensus panel headed by a consultant neurologist established the final diagnosis 
according to standard criteria for dementia (DSM-III-R), and Alzheimer’s disease (NINCDS-
ADRDA). 
 
Cognitive function assessment 
Cognitive function was assessed in detail with a test battery comprising the Stroop test (time 
in seconds taken for completing the reading/colour naming interference task), the letter-
digit substitution task (number of correct digits in 1 minute), and the verbal fluency test 
(number of animal species within 1 minute).16 Cognitive function assessment was carried out 
at baseline (time of TCD) and at two subsequent follow-up examinations. To obtain an 
overall measure of cognitive tests, we calculated the g-factor, which explained 62-64% of the 
overall variance in cognitive test scores in our population. For each participant, z-scores 
were calculated for each test separately, by dividing the difference between individual test 
score and mean test score by the standard deviation. 
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Other measurements 
We assessed smoking status (i.e. current, former, never) and medication use at baseline by 
interview. Blood pressure was measured on the right arm with a random-zero 
sphygmomanometer prior to and during TCD investigation; hypertension was defined as a 
systolic/diastolic blood pressure >140/90mmHg, or the use of antihypertensive medication. 
Fasting serum lipid levels were measured at baseline. Diabetes was defined as the use of 
blood glucose-lowering medication at baseline or a fasting serum glucose level ≥7.0 mmol/L. 
Carotid intima media thickness was measured by Doppler ultrasound. APOE genotype was 
determined using polymerase chain reaction on coded DNA samples, and carrier status 
defined as heterozygote (1 ε4 allele) or homozygote (2 ε4 alleles).  
 
Analysis 
Analyses included all non-demented participants without a history of stroke, who underwent 
TCD. Because of a right-skewed distribution of CVR, we first performed a natural logarithmic 
transformation to obtain a roughly normal distribution of the data. Missing covariate data 
(maximum 8.3%) were imputed using 5-fold multiple imputation, based on determinant, 
outcome and included covariates (with APOE genotype as predictor only). Distribution of 
covariates was similar in the imputed versus non-imputed dataset. We used analysis of 
covariance (ANCOVA) to test for age- and sex-adjusted differences in baseline characteristics 
between participants who underwent TCD and those who did not.  
 
We assessed the association between CVR and various cardiovascular risk factors, using 
linear regression. We then determined risk of dementia and Alzheimer’s disease by time 
following TCD assessment, using Cox proportional hazard models. The proportional hazard 
assumption was met. We used follow-up time in years as the time-scale in these models, and 
verified that the choice of time scale (time on study versus age of onset) did not affect the 
results. Follow-up was near complete till 1st January 2014 (95.7% of potential person years), 
and participants were censored within this follow-up period at date of dementia diagnosis, 
date of death, date of loss to follow-up, or 1st January 2014, whichever came first. We 
repeated analyses 1) for men and women separately; 2) for persons above and below the 
median age of 70 years; 3) censoring for incident stroke; 4) excluding participants with 
exhausted vasomotor reactivity (i.e. values below -2SD from the mean) as may be seen in 
case of severe carotid artery stenosis or occlusion,17 and 5) excluding the (arbitrarily chosen) 
first 4 years of follow-up to assess potential reverse causality.  We assessed effect 
modification by baseline blood pressure, and by change in mean arterial pressure during 
investigation by adding multiplicative interaction terms to the model, and stratification.  
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Next, we determined the association between baseline CVR and baseline test scores on the 
cognitive assessment battery, as well as decline in test scores during follow-up, using linear 
mixed models. We fitted the model in maximum likelihood to the g-factor of scores on the 
cognitive assessment battery. Based on the Bayesian information criterion (BIC), we chose a 
Toeplitz with homogenous variance structure as covariance structure for the fixed effects, 
and made no assumptions (unstructured) for the random effects. Adding a quadratic term 
did not improve the model. Next, we simplified the saturated model by excluding redundant 
interactions between covariates, again based on the BIC, resulting in a model with the 
interactions follow-up*age and follow-up*CVR. Finally, we added other covariates in 
agreement with the fully adjusted model for dementia, and refitted the model in restricted 
maximum likelihood.  
 
All analyses were adjusted for age, sex, and change in mean arterial pressure following 
hypercapnia, and additionally in a second model for blood pressure, serum total cholesterol, 
HDL cholesterol and triglycerides, use of antihypertensive or lipid-lowering medication, 
diabetes, carotid intima-media thickness, and APOE genotype. Analyses were done using 
SPSS Statistics version 21 (IBM Corp, Armonk, NY, USA). Alpha (type 1 error) was set at 0.05. 
 
 

Characteristics Participants 
(N=1629) 

Non-participants 
(N=940) P-value* 

Age (mean±SD) 70.6 ±6.2 72.9 ±6.7 <0.0001 
Female sex 754 (46.3%) 713 (75.9%) <0.0001 
Smoking    
     Former 908 (56.1%) 381 (41.0%) 0.005 
     Current 257 (15.9%) 146 (15.7%) 0.11 
Systolic blood pressure (mm Hg, mean±SD) 143 (±21) 144 (±21) 0.47 
Diastolic blood pressure (mm Hg, mean±SD) 76 (±11) 75 (±11) 0.91 
Blood pressure lowering medication  579 (36.4%) 384 (42.4%) 0.14 
Diabetes  193 (12.2%) 126 (14.0%) 0.13 
Total cholesterol (mean±SD) 5.8 (±1.0) 5.9 (±1.0) 0.20 
HDL cholesterol (mean±SD) 1.4 (±0.4) 1.4 (±0.4) 0.11 
Triglycerides (mean±SD) 1.5 (±0.8) 1.6 (±0.7) 0.19 
Lipid-lowering medication  223 (13.8%) 135 (14.7%) 0.26 
Body mass index (mean±SD) 26.6 (±3.8) 27.3 (±4.3) 0.007 
Carotid intima-media thickness (mm, mean±SD) 1.06 (±0.18) 1.08 (±0.19) 0.06 
APOE genotype    
    ε4 heterozygosity  438 (28.0%) 228 (25.6%) 0.28 
    ε4 homozygosity 35 (2.2%) 17 (1.9%) 0.73 
Transcranial Doppler investigation    
     CO2 vasoreactivity (%/kPa, median, IQR) 39.6 (28.6-53.9) n/a - 
     ΔMAP during CO2 challenge (mmHg, mean±SD) 8.8 (±7.3) n/a - 

Table 1. Baseline characteristics of participants and non-participants. SD=standard deviation; 
IQR=interquartile range; MAP=mean arterial pressure; n/a=not applicable. *adjusted for age and sex when 
applicable. 
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RESULTS 
 
Among 2,569 eligible participants undergoing TCD with induced hypercapnia, no temporal 
bone window was present on either side in 632 (24.6%) individuals. Measurements could 
not be completed in 214 (8.3%) cases, due to participants feeling anxious or unwell (n=54), 
lack of time (n=3), or other undocumented causes (n=157). In addition, in 94 participants we 
failed to obtain a reliable measurement of cerebrovascular reactivity (CVR) despite adequate 
CO2 induction, thus leaving a total of 1,629 cases for analysis. Baseline characteristics of 
participants in comparison with non-participants are presented in Table 1. 
 
CVR was lower in women than in men, and also impaired in current smokers, individuals 
with dyslipidaemia, and to a lesser extent those with diabetes. Conversely, higher blood 
pressure at time of examination and higher BMI were significantly associated with higher 
CVR, as were more pronounced increases in mean arterial pressure (MAP) in response to the 
CO2 challenge (Table 2). 
 

 β (95% CI) P-value 

Age (per 10 years) -0.223 (-0.302;-0.144) <0.0001 
Female sex -0.213 (-0.327;-0.098) 0.0003 
Smoking   
    Never REFERENCE  
    Former -0.087 (-0.206;0.032) 0.15 
    Current -0.314 (-0.471;-0.157) <0.0001 
Mean arterial pressure (per 10mmHg) 0.096 (0.060;0.132) <0.0001 
Δ Mean arterial pressure during CO2 challenge 0.156 (0.087;0.225) <0.0001 
Antihypertensive medication -0.066 (-0.175;0.042) 0.23 
Diabetes -0.139 (-0.291;0.013) 0.07 
Cholesterol (per mmol/L) -0.051 (-0.107;0.004) 0.07 
High-density lipoprotein (per mmol/L) 0.225 (0.063;0.387) 0.007 
Triglycerides (per mmol/L) 0.069 (-0.011;0.148) 0.09 
Lipid-lowering medication -0.098 (-0.247;0.051) 0.20 
Body-mass index (per 1 point increase) 0.025 (0.011;0.038) 0.0004 

Table 2. Cardiovascular risk factors and cerebrovascular reactivity. All presented variables were entered in the 
multivariable model. 
 
During a mean follow-up of 11.5 (±4.3) years, 209 individuals developed dementia, of whom 
171 (81.2%) had Alzheimer’s disease. Lower CVR at baseline was associated with an 
increased risk of dementia during follow-up, similar for all-cause dementia and Alzheimer’s 
disease (Figure 1). Of all incident dementia cases, 30 were preceded by a stroke (a median 
4.5 years before dementia diagnosis), but censoring at time of stroke did not affect risk 
estimates of CVR for dementia (Figure 2). Risk estimates were also robust against excluding 
the first years of follow-up (Figure 2). Effects were somewhat larger in women than in men, 
and in younger individuals, albeit neither difference was statistically significant (Figure 2). 
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Next, we determined the association between baseline CVR and baseline test scores on the 
cognitive assessment battery, as well as decline in test scores during follow-up, using linear 
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interactions between covariates, again based on the BIC, resulting in a model with the 
interactions follow-up*age and follow-up*CVR. Finally, we added other covariates in 
agreement with the fully adjusted model for dementia, and refitted the model in restricted 
maximum likelihood.  
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HDL cholesterol and triglycerides, use of antihypertensive or lipid-lowering medication, 
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SPSS Statistics version 21 (IBM Corp, Armonk, NY, USA). Alpha (type 1 error) was set at 0.05. 
 
 

Characteristics Participants 
(N=1629) 

Non-participants 
(N=940) P-value* 

Age (mean±SD) 70.6 ±6.2 72.9 ±6.7 <0.0001 
Female sex 754 (46.3%) 713 (75.9%) <0.0001 
Smoking    
     Former 908 (56.1%) 381 (41.0%) 0.005 
     Current 257 (15.9%) 146 (15.7%) 0.11 
Systolic blood pressure (mm Hg, mean±SD) 143 (±21) 144 (±21) 0.47 
Diastolic blood pressure (mm Hg, mean±SD) 76 (±11) 75 (±11) 0.91 
Blood pressure lowering medication  579 (36.4%) 384 (42.4%) 0.14 
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     ΔMAP during CO2 challenge (mmHg, mean±SD) 8.8 (±7.3) n/a - 

Table 1. Baseline characteristics of participants and non-participants. SD=standard deviation; 
IQR=interquartile range; MAP=mean arterial pressure; n/a=not applicable. *adjusted for age and sex when 
applicable. 
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RESULTS 
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Body-mass index (per 1 point increase) 0.025 (0.011;0.038) 0.0004 
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Figure 1. Risk of dementia and Alzheimer’s disease. Baseline cerebrovascular reactivity in relation to risk of 
developing dementia (left) and Alzheimer’s disease (right), visualised as dementia-free survival in a smoothed 
Kaplan-Meier curve (top) and per quartile of vasoreactivity in a fully adjusted Cox model (bottom). 
 
 

 
Figure 2. Subgroup and sensitivity analyses for vasoreactivity and dementia risk. The figure displays for 
several sensitivity analyses the relative risks for dementia per standard deviation increase in cerebrovascular 
reactivity. Results from the fully adjusted Cox model are shown. Exhausted vasoreactivity is defined as any 
value below -2 standard deviations from the mean. CI=confidence interval. 
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Of all participants, 1,154 (70.1%) had hypertension at baseline, of whom 579 were taking 
blood pressure lowering medication. Risk estimates of CVR for dementia were higher in 
individuals without hypertension (HR [95%CI] per standard deviation increase: 0.69 [0.53-
0.91] versus 0.95 [0.79-1.14] in those with hypertension; P-value for interaction = 0.03). This 
was driven by higher estimates in individuals who had low-normal blood pressure levels 
without use of blood pressure lowering medication (Table 3). Risk estimates for CVR also 
tended to differ with change in MAP following CO2 challenge (P-value for interaction = 0.08), 
such that risk of dementia was highest if impaired CVR was accompanied by a marked 
increase in MAP (e.g.HR per SD increase in CVR 0.58 [0.40-0.83] within the highest quartile 
of ≥13mmHg). This was seen regardless of hypertensive status, and similar when assessing 
relative (as a percentage of baseline MAP) rather than absolute change in MAP.  
 
Of all participants, 1,608 (98.7%) underwent cognitive testing at baseline, and repeated 
assessment was done in 1,094/1,251 (87.5%) and 699/910 (76.8%) of surviving, non-
demented individuals after a mean follow-up of 4.5 (SD 0.5) years and 11.0 (SD 0.3) years, 
respectively. Participants with higher CVR performed better on cognitive tests at baseline (g-
factor: β=0.063, P=0.007), in particular due to improved performance on the letter-digit 
substitution task (Figure 3). CVR was not associated with change in test performance during 
three consecutive assessments over 11 years of follow-up (g-factor: β=-0.021, P=0.34; Figure 
3), irrespective of age, sex, and hypertensive status (all P-values for interaction >0.05). 
 

 No blood-pressure lowering 
medication 

 Using blood-pressure lowering 
medication 

 Ndementia/Ntotal HR (95% CI)  Ndementia/Ntotal HR (95% CI) 

All participants 129/1041 0.85 (0.71-1.02)  80/588 0.93 (0.75-1.15) 
Blood pressure      
         SBP <130  28/259 0.66 (0.45-0.95)  7/90 1.03 (0.45-2.34) 
         SBP 130-149  54/389 0.88 (0.67-1.15)  29/198 1.07 (0.70-1.64) 
         SBP ≥150 47/393 1.01 (0.71-1.43)  44/300 0.87 (0.64-1.17) 
      

         DBP <75  48/343 0.83 (0.61-1.11)  21/177 0.92 (0.60-1.41) 
         DBP 75-84  45/371 0.84 (0.61-1.16)  31/228 0.89 (0.61-1.28) 
         DBP ≥85 36/326 0.90 (0.62-1.31)  28/183 0.94 (0.63-1.41) 
      

         MAP <95 49/351 0.77 (0.58-1.04)  13/133 1.21 (0.66-2.22) 
         MAP 95-104  30/286 0.95 (0.66-1.36)  27/184 0.84 (0.58-1.23) 
         MAP ≥105 50/394 0.86 (0.61-1.22)  40/271 0.92 (0.66-1.28) 
      

         PP <60 43/395 0.74 (0.56-0.99)  16/159 0.90 (0.50-1.63) 
         PP 60-74  51/368 0.86 (0.63-1.16)  26/194 0.85 (0.56-1.29) 
         PP ≥75 35/276 1.00 (0.67-1.50)  38/235 0.94 (0.68-1.28) 

Table 3. Cerebrovascular reactivity and dementia in relation by hypertensive status. SBP=systolic blood 
pressure; DBP=diastolic blood pressure; MAP=mean arterial pressure; PP=pulse pressure; HR=hazard ratio; 
CI=confidence interval. Hazard ratios are presented per standard deviation increase in vasoreactivity for a 
model including age, sex, change in mean arterial pressure during CO2 challenge, and baseline blood pressure. 
 



C H A P T E R  3 . 3  

112 
 

 
Figure 1. Risk of dementia and Alzheimer’s disease. Baseline cerebrovascular reactivity in relation to risk of 
developing dementia (left) and Alzheimer’s disease (right), visualised as dementia-free survival in a smoothed 
Kaplan-Meier curve (top) and per quartile of vasoreactivity in a fully adjusted Cox model (bottom). 
 
 

 
Figure 2. Subgroup and sensitivity analyses for vasoreactivity and dementia risk. The figure displays for 
several sensitivity analyses the relative risks for dementia per standard deviation increase in cerebrovascular 
reactivity. Results from the fully adjusted Cox model are shown. Exhausted vasoreactivity is defined as any 
value below -2 standard deviations from the mean. CI=confidence interval. 

C E R E B R O V A S C U L A R  R E A C T I V I T Y  

113 
 

Of all participants, 1,154 (70.1%) had hypertension at baseline, of whom 579 were taking 
blood pressure lowering medication. Risk estimates of CVR for dementia were higher in 
individuals without hypertension (HR [95%CI] per standard deviation increase: 0.69 [0.53-
0.91] versus 0.95 [0.79-1.14] in those with hypertension; P-value for interaction = 0.03). This 
was driven by higher estimates in individuals who had low-normal blood pressure levels 
without use of blood pressure lowering medication (Table 3). Risk estimates for CVR also 
tended to differ with change in MAP following CO2 challenge (P-value for interaction = 0.08), 
such that risk of dementia was highest if impaired CVR was accompanied by a marked 
increase in MAP (e.g.HR per SD increase in CVR 0.58 [0.40-0.83] within the highest quartile 
of ≥13mmHg). This was seen regardless of hypertensive status, and similar when assessing 
relative (as a percentage of baseline MAP) rather than absolute change in MAP.  
 
Of all participants, 1,608 (98.7%) underwent cognitive testing at baseline, and repeated 
assessment was done in 1,094/1,251 (87.5%) and 699/910 (76.8%) of surviving, non-
demented individuals after a mean follow-up of 4.5 (SD 0.5) years and 11.0 (SD 0.3) years, 
respectively. Participants with higher CVR performed better on cognitive tests at baseline (g-
factor: β=0.063, P=0.007), in particular due to improved performance on the letter-digit 
substitution task (Figure 3). CVR was not associated with change in test performance during 
three consecutive assessments over 11 years of follow-up (g-factor: β=-0.021, P=0.34; Figure 
3), irrespective of age, sex, and hypertensive status (all P-values for interaction >0.05). 
 

 No blood-pressure lowering 
medication 

 Using blood-pressure lowering 
medication 

 Ndementia/Ntotal HR (95% CI)  Ndementia/Ntotal HR (95% CI) 

All participants 129/1041 0.85 (0.71-1.02)  80/588 0.93 (0.75-1.15) 
Blood pressure      
         SBP <130  28/259 0.66 (0.45-0.95)  7/90 1.03 (0.45-2.34) 
         SBP 130-149  54/389 0.88 (0.67-1.15)  29/198 1.07 (0.70-1.64) 
         SBP ≥150 47/393 1.01 (0.71-1.43)  44/300 0.87 (0.64-1.17) 
      

         DBP <75  48/343 0.83 (0.61-1.11)  21/177 0.92 (0.60-1.41) 
         DBP 75-84  45/371 0.84 (0.61-1.16)  31/228 0.89 (0.61-1.28) 
         DBP ≥85 36/326 0.90 (0.62-1.31)  28/183 0.94 (0.63-1.41) 
      

         MAP <95 49/351 0.77 (0.58-1.04)  13/133 1.21 (0.66-2.22) 
         MAP 95-104  30/286 0.95 (0.66-1.36)  27/184 0.84 (0.58-1.23) 
         MAP ≥105 50/394 0.86 (0.61-1.22)  40/271 0.92 (0.66-1.28) 
      

         PP <60 43/395 0.74 (0.56-0.99)  16/159 0.90 (0.50-1.63) 
         PP 60-74  51/368 0.86 (0.63-1.16)  26/194 0.85 (0.56-1.29) 
         PP ≥75 35/276 1.00 (0.67-1.50)  38/235 0.94 (0.68-1.28) 

Table 3. Cerebrovascular reactivity and dementia in relation by hypertensive status. SBP=systolic blood 
pressure; DBP=diastolic blood pressure; MAP=mean arterial pressure; PP=pulse pressure; HR=hazard ratio; 
CI=confidence interval. Hazard ratios are presented per standard deviation increase in vasoreactivity for a 
model including age, sex, change in mean arterial pressure during CO2 challenge, and baseline blood pressure. 
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Figure 3. Cerebrovascular reactivity and cognitive test performance. The figure shows the association of 
cerebrovascular reactivity with cognitive test scores at baseline (cross-sectional, black boxes), and with change 
in cognitive scores across three cognitive examination rounds (longitudinal, grey diamonds). Results represent 
the mean difference in standardised test scores per standard deviation increase in vasoreactivity at baseline, 
and for the longitudinal analyses expressed per 10 years of follow-up. 
 

 
DISCUSSION 
 
In this population-based study, lower cerebrovascular reactivity was associated with an 
increased long-term risk of developing dementia and Alzheimer’s disease. Participants with 
low vasoreactivity did wose on cognitive testing at baseline, but despite prolonged 
associations of vasoreactivity with dementia risk, this did not translate into less decline on 
repeated cognitive testing. 
 
In line with prior cross-sectional studies,11-13 participants with low vasoreactivity performed 
worse on cognitive assessment at baseline, and importantly, among cognitively healthy 
individuals these findings translate into an increased risk of developing dementia. The 
sustained risk increases beyond the first years of follow-up thereby suggests that 
vasoreactivity not only changes secondary to ongoing neurodegeneration, but could also 
play a role in its pathophysiology. Nevertheless, we did not observe the same pattern for 
changes in performance on a cognitive assessment battery in non-demented individuals. This 
could mean that impaired vasoreactivity is not necessarily harmful with an otherwise healthy 
brain and functioning autonomous nervous system, although methodological considerations 
like insensitive outcome measures or substantial attrition for repeated cognitive testing at 
the end of follow-up should not be discounted. In the absence of other published 
longitudinal studies our findings therefore warrant replication, notwithstanding their 
interest in light of several potential underlying mechanisms. 
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Cerebrovascular reactivity depends on endothelial cell, pericyte and vascular smooth muscle 
cell function. Endothelial vasodilators, among which noticeably nitric oxide, are important 
mediators of the autoregulatory response,18-19 and they have previously been linked to 
dementia pathology by correlations of endothelial nitric oxide synthase levels with tau and 
amyloid burden.20 Failure of the autoregulatory response leads to (episodic) hypoperfusion 
or uncontrolled hyperaemia, and the resultant reduction in tissue oxygenation can directly 
trigger expression of various inflammatory cytokines via activation of hypoxia-inducible 
transcription factors (HIF).21,22 Inflammatory cytokines subsequently activate microglia,23 
inducing release of pro-inflammatory neurotoxic factors (e.g. IL-1β and TNFα) and oxidative 
stress. Similar rises in inflammatory factors, including TNF , TGF , various interleukins and 
matrix-metalloproteinases (MMP), are seen in patients with Alzheimer’s disease.24 
Furthermore, HIF renders endothelial cells responsive to proangiogenic factors, including 
vascular endothelial growth factor (VEGF), angiopoietins and platelet derived growth factor 
(PDGF). These factors are vital for maintaining blood-brain barrier integrity through 
regulating endothelial cell and pericyte function in angiogenesis,25,26 and pericyte deficiency 
itself has been associated with age-related vascular damage that precedes 
neurodegeneration.27 Hypoxia is furthermore found to lead to aberrant angiogenesis and 
microvascular degeneration in patients with Alzheimer’s disease by suppressing expression 
of the mesenchyme homeobox 2 gene (MEOX2) in brain endothelial cells.28 MEOX2 deficient 
mice in the same study showed vascular degeneration and poor amyloid-β clearance,28 
implicating MEOX2 as a mediator between hypoxia and hallmarks of Alzheimer’s disease 
pathology.  
 
The strongest association between vasoreactivity and dementia in our study was observed in 
individuals with low blood pressure and no prior treatment for hypertension, in line with the 
presumption that low arterial pressure renders the brain particularly vulnerable to sudden 
pressure drops. We would however have expected this finding to extend to the hypertensive 
population, as chronic hypertension shifts the regulatory range of mean arterial pressure 
towards higher levels,29 protecting the brain against higher pressures, but rendering it 
vulnerable to hypoperfusion in case of blood pressure drops.30 Perhaps any relation to 
arterial pressure is obscured in this group by a wider ‘normal’ regulatory range with varying 
degrees of longstanding hypertension, or coinciding disturbances in other autoregulatory 
mechanisms, notably the baroreceptor reflex.31,32 The importance of other mechanisms may 
also be reflected by increases in mean arterial pressure parallel to the vasodilatory response 
upon carbon dioxide challenge, which could indicate physiologically insufficient dilatation of 
the arterioles. Finally, various antihypertensive drug classes have differential effects on 
(variability in) arterial pressure, and the cerebral vasculature. Minimising variability in blood 
pressure, for instance by calcium-channel blockers or non-loop diuretics,33 might lessen the 
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challenge on autoregulatory mechanisms to maintain cerebral blood flow. However, few 
drugs have directly been tested for improvement of cerebrovascular reactivity, and 
regarding blood pressure medication in one small trial, no differences were seen in 
vasoreactivity between treatment with lisinopril, candesartan, and hydrochlorothiazide.34 In 
view of the large risk of confounding by indication in observational studies, such (cross-over) 
trials could be most helpful to increase insight into physiological mechanisms, and determine 
optimal therapy in patients at excess risk of stroke and dementia. 
 
Although we believe our results are valid, there are certain limitations to our study to take 
into account. First, the sample of the Rotterdam Study cohort that underwent TCD were 
older, more often female, and less often prior smokers, potentially giving rise to selection 
bias. As female sex and increasing age are associated with lower cerebrovascular reactivity 
and higher incidence of dementia,35 this might have caused underestimation of the true 
population effect. Second, risk estimates were robust to adjustment for a wide range of 
potential cardiovascular confounders, but in the absence of brain imaging we cannot rule 
out residual confounding by effects of cerebral small-vessel on dementia risk other than via 
cerebral autoregulation.36 Third, although follow-up for dementia was near-complete (96%), 
attrition for extensive cognitive assessment was substantial, potentially biasing results to the 
null. Fourth, we may have failed to detect certain Alzheimer specific changes, because the 
memory domain was not included in our cognitive assessment, and medial cerebral artery 
rather than posterior cerebral artery flow velocity is less informative about changes in the 
hippocampus and amygdala. More generally, region-specific assessment of vasoreactivity, 
for instance using arterial spin labelling, is likely more sensitive in detecting 
neurodegenerative changes.12 Finally, cerebral blood flow regulation is a complex interplay 
of various mechanisms, and future research may improve upon our study by also 
incorporating other haemodynamic parameters such as heart rate (variability) and 
baroreflex sensitivity. 
 
In conclusion, cerebrovascular reactivity is associated with an increased risk of dementia in 
the general population. This suggests that transient episodes of cerebral hypoxia due to 
impaired autoregulation may contribute to the development of dementia.  
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challenge on autoregulatory mechanisms to maintain cerebral blood flow. However, few 
drugs have directly been tested for improvement of cerebrovascular reactivity, and 
regarding blood pressure medication in one small trial, no differences were seen in 
vasoreactivity between treatment with lisinopril, candesartan, and hydrochlorothiazide.34 In 
view of the large risk of confounding by indication in observational studies, such (cross-over) 
trials could be most helpful to increase insight into physiological mechanisms, and determine 
optimal therapy in patients at excess risk of stroke and dementia. 
 
Although we believe our results are valid, there are certain limitations to our study to take 
into account. First, the sample of the Rotterdam Study cohort that underwent TCD were 
older, more often female, and less often prior smokers, potentially giving rise to selection 
bias. As female sex and increasing age are associated with lower cerebrovascular reactivity 
and higher incidence of dementia,35 this might have caused underestimation of the true 
population effect. Second, risk estimates were robust to adjustment for a wide range of 
potential cardiovascular confounders, but in the absence of brain imaging we cannot rule 
out residual confounding by effects of cerebral small-vessel on dementia risk other than via 
cerebral autoregulation.36 Third, although follow-up for dementia was near-complete (96%), 
attrition for extensive cognitive assessment was substantial, potentially biasing results to the 
null. Fourth, we may have failed to detect certain Alzheimer specific changes, because the 
memory domain was not included in our cognitive assessment, and medial cerebral artery 
rather than posterior cerebral artery flow velocity is less informative about changes in the 
hippocampus and amygdala. More generally, region-specific assessment of vasoreactivity, 
for instance using arterial spin labelling, is likely more sensitive in detecting 
neurodegenerative changes.12 Finally, cerebral blood flow regulation is a complex interplay 
of various mechanisms, and future research may improve upon our study by also 
incorporating other haemodynamic parameters such as heart rate (variability) and 
baroreflex sensitivity. 
 
In conclusion, cerebrovascular reactivity is associated with an increased risk of dementia in 
the general population. This suggests that transient episodes of cerebral hypoxia due to 
impaired autoregulation may contribute to the development of dementia.  
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ABSTRACT 
 
With the improved care for patients with myocardial infarction and heart failure, patients 
live longer with suboptimal cardiac function, and are increasingly susceptible to late-life 
diseases including dementia. Cardiovascular risk factors are closely linked with future 
dementia risk, but whether heart disease is related to an increased risk of dementia has not 
been comprehensively evaluated. We systematically searched the PubMed, Embase, and 
Cochrane libraries until 1st November 2017 for longitudinal studies in any language about the 
relation between coronary heart disease or heart failure and risk of developing dementia. 
We assessed study quality, performed random effects meta-analysis to obtain pooled effect 
estimates, and assessed potential publication bias by drawing funnel plots. Among 5,019 
unique citations, we identified 16 studies with 1,309,483 individuals regarding coronary 
heart disease, and 7 studies with 1,958,702 individuals about heart failure. A history of 
coronary heart disease was associated with 27% increased risk of dementia (pooled relative 
risk (RR) [95% confidence interval (CI)]: 1.27 [1.07-1.50]), albeit with considerable 
heterogeneity across studies (I2=80%). When limiting meta-analysis to prospective 
population-based cohorts, the pooled estimate was similar (RR 1.26 [1.06-1.49]; 9 studies), 
and highly consistent across studies (I2=0%). Heart failure was associated with 60% increased 
risk of dementia (pooled RR 1.60 [1.19-2.13]), with moderate overall heterogeneity (I2=59%) 
again absent among the prospective population-based cohorts (I2=0%, RR 1.80 [1.41-2.31]; 4 
studies). Funnel plot asymmetry appeared explicable by heterogeneity in study design for 
coronary heart disease, but was also consistent with reporting bias for heart failure. In 
conclusion, coronary heart disease and heart failure are associated with moderate increases 
in the risk of dementia. However, results were heterogeneous, and the number of studies 
about heart failure limited, requiring further longitudinal study with detailed cardiac 
phenotyping and thorough outcome assessment to delineate these associations. 
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INTRODUCTION 
 
Coronary heart disease, heart failure, and dementia are among the leading causes of death 
and disability,1,2 and often co-occur in the ageing population. The importance of late-life 
complications of cardiovascular disease has amplified with the advances in cardiovascular 
medicine over the past decades. Mortality due to coronary heart disease has plunged since 
its peak in the early 1960s, largely due to improvements in acute treatment and secondary 
prevention.3 Similarly, the prognosis with heart failure has improved with better medical 
treatment and cardiac resynchronization therapy.3,4 Though great improvements in health 
care, these developments now render patients with cardiovascular disease susceptible to 
diseases that have their incidence peak in late-life, such as dementia.  
 
The brain is a highly vascularised organ, receiving 15% of cardiac output and accounting for 
about 20% of the body’s total oxygen consumption despite comprising less than 3% of body 
weight,5 and it may therefore be particularly vulnerable to impairment in blood flow. The 
now well-established importance of cardiovascular risk factors in prevention of dementia, 
including Alzheimer’s disease,6,7 further suggests that patients with manifest cardiovascular 
disease may be at increased risk of developing dementia years or even decades later. 
Because of the urgency for timely intervention to prevent dementia,8 this could hold 
important implications for focused preventive strategies.9 However, evidence from 
longitudinal studies linking coronary heart disease and heart failure to dementia is 
fragmented, with inconsistencies between findings, and study populations not seldom too 
small to detect clinically relevant associations. 
 
We therefore systematically reviewed and meta-analysed the available evidence to 
determine the association of coronary heart disease and heart failure with future risk of 
dementia and clinical Alzheimer’s disease.  
 
 
METHODS 
 
Search strategy 
We conducted a systematic search of the literature in PubMed, Embase, and the Cochrane 
library for studies published through 1st November 2017. We searched for prospective 
studies of in humans published reported the risk of all-cause dementia or Alzheimer’s 
disease in relation to coronary heart disease (CHD) or congestive heart failure (CHF). We 
limited our search to original articles, excluding scientific abstracts. No restrictions on date 
or language were applied. The complete search strategy is presented in Box 1. We further 
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fragmented, with inconsistencies between findings, and study populations not seldom too 
small to detect clinically relevant associations. 
 
We therefore systematically reviewed and meta-analysed the available evidence to 
determine the association of coronary heart disease and heart failure with future risk of 
dementia and clinical Alzheimer’s disease.  
 
 
METHODS 
 
Search strategy 
We conducted a systematic search of the literature in PubMed, Embase, and the Cochrane 
library for studies published through 1st November 2017. We searched for prospective 
studies of in humans published reported the risk of all-cause dementia or Alzheimer’s 
disease in relation to coronary heart disease (CHD) or congestive heart failure (CHF). We 
limited our search to original articles, excluding scientific abstracts. No restrictions on date 
or language were applied. The complete search strategy is presented in Box 1. We further 
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hand-searched bibliographies of relevant publications, and contacted authors of selected 
publications to complement the data that were available in the published reports.  
 

PUBMED 
((dementia[mesh] OR dementia[tiab] OR alzheimer*[tiab]) 
AND  
("myocardial ischemia"[mesh] OR ((myocard*[tiab] OR heart[tiab]) AND infarct*[tiab]) OR "coronary heart 
disease"[tiab] OR "coronary artery disease"[tiab] OR “acute coronary syndrome”[tiab] OR “angina 
pectoris”[tiab] OR “myocardial ischemia”[tiab] OR “coronary artery obstruction”[tiab] OR “coronary artery 
atherosclerosis”[tiab] OR “coronary artery thrombosis”[tiab] 
OR “cardiac output, low”[mesh] OR cardiomegaly[mesh] OR cardiomyopathies[mesh] OR “heart failure”[mesh] 
OR “ventricular dysfunction”[mesh] OR “heart failure”[tiab] OR “cardiac failure”[tiab] OR “cardiac 
function”[tiab] OR “heart function”[tiab] OR cardiomyopathy[tiab] OR cardiomegaly[tiab]) 
AND ("0001/01/01"[PDAT] : "2017/11/01"[PDAT])) 
NOT systematic review[pt] NOT review[pt] NOT case repORts[pt] NOT clinical conference[pt] NOT 
congresses[pt] NOT editorial[pt] NOT Meta-analysis[pt] NOT other animals[mh] 
 
EMBASE 
(‘dementia’/exp OR dementia:ab,ti OR alzheimer*:ab,ti) 
AND 
(‘ischemic heart disease’/exp OR ((myocard*:ab,ti  OR heart:ab,ti) AND infarct*:ab,ti ) OR ‘coronary heart 
disease’:ab,ti OR ‘coronary artery disease’:ab,ti OR ‘acute coronary syndrome’:ab,ti OR ‘angina pectoris’:ab,ti 
OR ‘myocardial ischemia’:ab,ti OR ‘coronary artery obstruction’:ab,ti OR ‘coronary artery atherosclerosis’:ab,ti 
OR ‘coronary artery thrombosis’:ab,ti 
OR ‘heart failure’/exp OR cardiomyopathy/exp OR cardiomegaly/exp OR ‘heart failure’:ab,ti OR ‘cardiac 
failure’:ab,ti  OR ‘cardiac function’:ab,ti OR ‘heart function’:ab,ti OR cardiomyopathy:ab,ti OR 
cardiomegaly:ab,ti ) 
NOT ([systematic review]/lim OR [review]/lim OR [conference abstract]/lim OR [conference paper]/lim OR 
[conference review]/lim OR [editorial]/lim OR [erratum]/lim OR 'nonhuman'/de) NOT [01-11-2017]/sd 
 
COCHRANE 
(dementia:ti,ab OR alzheimer*:ti,ab) 
AND 
(((myocard*:ti,ab OR heart:ti,ab) AND infarct*:ti,ab) OR "coronary heart disease":ti,ab OR "coronary artery 
disease":ti,ab OR "acute coronary syndrome":ti,ab OR "angina pectoris":ti,ab OR "myocardial ischemia":ti,ab 
OR "coronary artery obstruction":ti,ab OR "coronary artery atherosclerosis":ti,ab OR "coronary artery 
thrombosis":ti,ab 
OR "heart failure":ti,ab OR "cardiac failure":ti,ab OR "cardiac function":ti,ab OR "heart function":ti,ab OR 
cardiomyopathy:ti,ab OR cardiomegaly:ti,ab) 

Box 1. Search terms included for each library search 

 
Study selection 
We imported all retrieved records into an EndNote (Clarivate Analytics) library and two 
investigators independently screened all articles for eligibility, using the following inclusion 
criteria: 1) cohort studies, or longitudinal studies conducted with routinely collected 
healthcare data (e.g. national medical registries or insurance databases), 2) determinant 
CHD (i.e. myocardial infarction with or without angina or coronary revascularisation), or CHF, 
and 3) report of incident dementia diagnosis as the outcome (i.e. at least all-cause dementia 
or Alzheimer’s disease as its most common subtype). We chose all-cause dementia as the 
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main outcome measure of interest for this meta-analysis, because a syndrome diagnosis of 
dementia can be defined with high consistency across studies, and is less dependent on 
advanced diagnostic testing which is often not feasible in large (population-based) studies. 
Yet, we acknowledge the importance of various neuropathology underlying the clinical 
picture of dementia, in particular as heart disease may relate stronger to cerebrovascular 
pathology than to other neuropathology. To provide more insight in the association of CHD 
and CHF with dementia independent of manifest cerebrovascular disease, we therefore 
adopted a clinical diagnosis of Alzheimer’s disease (per study protocol) as a secondary 
outcome measure. If multiple results were reported for the same cohort, we preferred the 
longer follow-up duration,10,11 longer follow-up along with more comprehensive assessment 
of exposure,12,13 larger number of incident dementia cases,14-17 most contemporary data,13 
or the study in which selection bias was considered least likely.18 In case of disagreement 
between assessors, consensus was reached through discussion.  
 
Data extraction 
Study characteristics were extracted from the identified reports independently by two 
researchers. The extracted information included year of publication, study period, study 
design, study population, description of the (ascertainment methods for) determinants and 
outcome, covariates that were adjusted for, follow-up time, number of observed events, and 
effect estimates with precision estimates (i.e. confidence interval or standard error). 
 
Quality assessment 
We critically appraised all selected studies, and formally assessed their quality by using a 
modification of the Newcastle-Ottawa-Scale,19 in line with prior recommendations for 
quality assessment of observational studies.20 Two independent researchers (FJW and RAS) 
scored the quality of each study on the following criteria: 1) study design, including source 
population, and sampling; 2) ascertainment methods for CHD and CHF; 3) incorporation of 
cognitive screening at baseline; 4) ascertainment methods for dementia; 5) adjustment for 
potential confounding factors; 6) follow-up duration; 7) attrition. Details of these criteria and 
rating categories are shown with Table 1.  Discrepancies between researchers in quality 
assessment were solved through consensus meeting.  
 
Analysis 
On the basis of expected differences in study populations and methodology, we used inverse 
variance weighted random effects models to pool the log transformed risk ratios and hazard 
ratios from primary studies. If multiple models were presented within a study, we selected 
the multivariable model in each study for meta-analysis. When relative risk (RR) estimates 
were presented in subgroups only (e.g. by sex), we first meta-analysed the within study 
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hand-searched bibliographies of relevant publications, and contacted authors of selected 
publications to complement the data that were available in the published reports.  
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NOT systematic review[pt] NOT review[pt] NOT case repORts[pt] NOT clinical conference[pt] NOT 
congresses[pt] NOT editorial[pt] NOT Meta-analysis[pt] NOT other animals[mh] 
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NOT ([systematic review]/lim OR [review]/lim OR [conference abstract]/lim OR [conference paper]/lim OR 
[conference review]/lim OR [editorial]/lim OR [erratum]/lim OR 'nonhuman'/de) NOT [01-11-2017]/sd 
 
COCHRANE 
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AND 
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disease":ti,ab OR "acute coronary syndrome":ti,ab OR "angina pectoris":ti,ab OR "myocardial ischemia":ti,ab 
OR "coronary artery obstruction":ti,ab OR "coronary artery atherosclerosis":ti,ab OR "coronary artery 
thrombosis":ti,ab 
OR "heart failure":ti,ab OR "cardiac failure":ti,ab OR "cardiac function":ti,ab OR "heart function":ti,ab OR 
cardiomyopathy:ti,ab OR cardiomegaly:ti,ab) 

Box 1. Search terms included for each library search 

 
Study selection 
We imported all retrieved records into an EndNote (Clarivate Analytics) library and two 
investigators independently screened all articles for eligibility, using the following inclusion 
criteria: 1) cohort studies, or longitudinal studies conducted with routinely collected 
healthcare data (e.g. national medical registries or insurance databases), 2) determinant 
CHD (i.e. myocardial infarction with or without angina or coronary revascularisation), or CHF, 
and 3) report of incident dementia diagnosis as the outcome (i.e. at least all-cause dementia 
or Alzheimer’s disease as its most common subtype). We chose all-cause dementia as the 
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main outcome measure of interest for this meta-analysis, because a syndrome diagnosis of 
dementia can be defined with high consistency across studies, and is less dependent on 
advanced diagnostic testing which is often not feasible in large (population-based) studies. 
Yet, we acknowledge the importance of various neuropathology underlying the clinical 
picture of dementia, in particular as heart disease may relate stronger to cerebrovascular 
pathology than to other neuropathology. To provide more insight in the association of CHD 
and CHF with dementia independent of manifest cerebrovascular disease, we therefore 
adopted a clinical diagnosis of Alzheimer’s disease (per study protocol) as a secondary 
outcome measure. If multiple results were reported for the same cohort, we preferred the 
longer follow-up duration,10,11 longer follow-up along with more comprehensive assessment 
of exposure,12,13 larger number of incident dementia cases,14-17 most contemporary data,13 
or the study in which selection bias was considered least likely.18 In case of disagreement 
between assessors, consensus was reached through discussion.  
 
Data extraction 
Study characteristics were extracted from the identified reports independently by two 
researchers. The extracted information included year of publication, study period, study 
design, study population, description of the (ascertainment methods for) determinants and 
outcome, covariates that were adjusted for, follow-up time, number of observed events, and 
effect estimates with precision estimates (i.e. confidence interval or standard error). 
 
Quality assessment 
We critically appraised all selected studies, and formally assessed their quality by using a 
modification of the Newcastle-Ottawa-Scale,19 in line with prior recommendations for 
quality assessment of observational studies.20 Two independent researchers (FJW and RAS) 
scored the quality of each study on the following criteria: 1) study design, including source 
population, and sampling; 2) ascertainment methods for CHD and CHF; 3) incorporation of 
cognitive screening at baseline; 4) ascertainment methods for dementia; 5) adjustment for 
potential confounding factors; 6) follow-up duration; 7) attrition. Details of these criteria and 
rating categories are shown with Table 1.  Discrepancies between researchers in quality 
assessment were solved through consensus meeting.  
 
Analysis 
On the basis of expected differences in study populations and methodology, we used inverse 
variance weighted random effects models to pool the log transformed risk ratios and hazard 
ratios from primary studies. If multiple models were presented within a study, we selected 
the multivariable model in each study for meta-analysis. When relative risk (RR) estimates 
were presented in subgroups only (e.g. by sex), we first meta-analysed the within study 
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results using fixed effects models. We formally assessed for heterogeneity between studies 
(Cochran’s Q statistic) to determine the share of variation across studies that was due to 
heterogeneity rather than chance (Higgins’ I2 statistic),21 and interpreted heterogeneity as 
probably of minor importance (<40%), moderate (30-60%), substantial (50-90%), or 
considerable (75-100%), in line with Cochrane recommendations. Publication bias was 
investigated using funnel plots, and formally tested using Egger’s test,22 in accordance with 
prior recommendations for interpretation of visual (a)symmetry.23    
 
Sensitivity analyses were performed to assess the influence of each individual study, 
omitting the studies with the largest weight on the overall result one by one (to a minimum 
of three). We performed additional sensitivity analyses on the basis of study quality criteria, 
by 1) assessing results from population-based cohort studies only, 2) limiting analyses to 
studies with adjustment for at least age, sex, and cardiovascular risk factors (Table 1 – 
adjustment score = 2), 3) limiting analyses to studies with refined outcome assessment 
(Table 1 – outcome score = 2), and 4) using an alternative case definition of Alzheimer’s 
disease that was reported as sensitivity analysis in one registry study,(24) in an attempt to 
harmonize case definition of Alzheimer’s disease across included studies about heart failure. 
All analyses were performed using the “meta”-package (version 4.8-4) of the statistical 
software R, version 3.4.2. 
 
 
RESULTS 
 
Of 5,019 unique citations that were identified through our search, we included 16 studies 
reporting the association between CHD and dementia, and 7 reports describing the 
association between CHF and dementia. The flow diagram illustrating the selection of these 
studies is presented in Figure 1.  
 
Coronary heart disease 
Characteristics of the 16 studies that reported the associations of CHD with future risk of 
dementia are presented in Table 2. The total number of participants was 1,309,483, with 
mean age at study entry ranging from 62.1 to 81.5 years, and studies generally including 
more women than men (overall: 56.6% women). Three of these studies assessed conversion 
from mild cognitive impairment to dementia,25-27 while 13 determined risk of dementia in 
cognitively healthy populations,11,13,14,18,28-36 predominantly embedded in prospective 
population-based cohort studies.11,13,14,18,28,30,31,33,34 Most studies included a history of 
myocardial infarction as its determinant, generally determined by interview, often with 
verification in medical records, and sometimes aided by electrocardiography (Table 2).  
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results using fixed effects models. We formally assessed for heterogeneity between studies 
(Cochran’s Q statistic) to determine the share of variation across studies that was due to 
heterogeneity rather than chance (Higgins’ I2 statistic),21 and interpreted heterogeneity as 
probably of minor importance (<40%), moderate (30-60%), substantial (50-90%), or 
considerable (75-100%), in line with Cochrane recommendations. Publication bias was 
investigated using funnel plots, and formally tested using Egger’s test,22 in accordance with 
prior recommendations for interpretation of visual (a)symmetry.23    
 
Sensitivity analyses were performed to assess the influence of each individual study, 
omitting the studies with the largest weight on the overall result one by one (to a minimum 
of three). We performed additional sensitivity analyses on the basis of study quality criteria, 
by 1) assessing results from population-based cohort studies only, 2) limiting analyses to 
studies with adjustment for at least age, sex, and cardiovascular risk factors (Table 1 – 
adjustment score = 2), 3) limiting analyses to studies with refined outcome assessment 
(Table 1 – outcome score = 2), and 4) using an alternative case definition of Alzheimer’s 
disease that was reported as sensitivity analysis in one registry study,(24) in an attempt to 
harmonize case definition of Alzheimer’s disease across included studies about heart failure. 
All analyses were performed using the “meta”-package (version 4.8-4) of the statistical 
software R, version 3.4.2. 
 
 
RESULTS 
 
Of 5,019 unique citations that were identified through our search, we included 16 studies 
reporting the association between CHD and dementia, and 7 reports describing the 
association between CHF and dementia. The flow diagram illustrating the selection of these 
studies is presented in Figure 1.  
 
Coronary heart disease 
Characteristics of the 16 studies that reported the associations of CHD with future risk of 
dementia are presented in Table 2. The total number of participants was 1,309,483, with 
mean age at study entry ranging from 62.1 to 81.5 years, and studies generally including 
more women than men (overall: 56.6% women). Three of these studies assessed conversion 
from mild cognitive impairment to dementia,25-27 while 13 determined risk of dementia in 
cognitively healthy populations,11,13,14,18,28-36 predominantly embedded in prospective 
population-based cohort studies.11,13,14,18,28,30,31,33,34 Most studies included a history of 
myocardial infarction as its determinant, generally determined by interview, often with 
verification in medical records, and sometimes aided by electrocardiography (Table 2).  
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Assessment of dementia varied across studies from registry data only, or at re-examination 
only, to re-examination with complementary surveillance of medical records (Table 2). Mean 
follow-up time ranged from 2 to 9.3 years, and the number of dementia cases included in 
the analyses ranged from 15 to 85,390. 
 
 

 

 

Figure 1. Flow diagram of the literature search. *For one study among Medicare participants in the United 
States,48 the authors could report only estimates for a composite measure of heart disease, and one Dutch 
population-based study excluded participants with clinical heart failure.37 §In the HYVET trial only 13 (0.4%) 
participants had heart failure at baseline.49 ♯Four articles described the associations of both coronary heart 
disease and heart failure with dementia. 

  
Overall, history of CHD was associated with an increased risk of all-cause dementia (relative 
risk (RR) [95% confidence interval]: 1.27 [1.08-1.50]; Figure 2), but with considerable 
heterogeneity across studies (I2 [95% CI] 80% [66-88%], P<0.0001). Among prospective 
population-based cohort studies only, heterogeneity was minor, whilst the pooled risk 
estimate was broadly unchanged (I2=0%, RR 1.26 [1.08-1.47]). Risk estimates were 
somewhat higher after exclusion of the highest weighted study,36 but remained similar with 
sequential exclusion of the highest weighted studies thereafter (Table 3. Findings were 
similar for studies that were judged to have made sufficient adjustment for confounding by 
cardiovascular risk factors, or had in-person outcome assessment in combination with 
record data (Table 3). Among eight studies that reported estimates for both all-cause 
dementia and Alzheimer’s disease separately, the pooled effect estimate for Alzheimer’s 
disease only was lower (RR 1.07 [0.90-1.28]; Figure 2), albeit less marked in the prospective 
population-based cohorts (RR 1.23 [1.01-1.50]).  The funnel plot of all thirteen studies 
displayed asymmetry (Figure 4A; P-value from Egger test = 0.04), but this was not seen 
among the nine prospective population-based cohorts (Figure 4C; P-value = 0.66).  
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Three studies reported CHD as a determinant for conversion from mild cognitive impairment 
to all-cause dementia (2) and Alzheimer’s disease (1), respectively. All reported non-
significantly increased risks associated with CHD (HR 1.71, 0.32-6.78;  RR 1.39, 0.60-3.26; and 
HR 1.05, 0.67-1.65, respectively).25-27 Because of the differences in outcome measure in this 
limited number of studies, we did not meta-analyse these results. 
 
Heart failure 
Characteristics of the seven studies investigating CHF and dementia are presented in Table 
2.12,16,18,24,29,32,34 A total number of 1,958,702 participants were included, with mean age at 
study entry ranging from 69 to 81.5 years, and including 48.2% women. Most studies were 
embedded in prospective population-based studies.12,16,18,34 Continuous measures of cardiac 
function and/or diagnosis of CHF were obtained using interview and ICD-coding, or on one 
occasion cardiac MRI12 (Table 2). In two studies using ICD-coding, diagnosis was verified by 
medical examinations.16,29 Assessment of dementia varied across studies from registry data 
only, or re-examination only, to re-examination with complementary use of medical records 
(Table 2). Mean follow-up time ranged from 4 to 8.6 years, and during this period 32 to 
148,541 participants had a diagnosis of dementia. Of meta-analysed studies, five reported 
estimates for all-cause dementia and Alzheimer’s disease. Diagnosis of Alzheimer’s disease 
was based on the NINCDS-ADRDA criteria in most studies, except one registry.24 
 
Among seven studies that were included in the meta-analysis, history of CHF was associated 
with an increased risk of all-cause dementia (RR 1.59 [1.19-2.13]; Figure 3). There was 
moderate heterogeneity across studies (I2 [95% CI] 58% [5-82%]), which was not present 
among the prospective population-based studies (I2 = 0% [0-69%]; pooled RR 1.80 [1.41-
2.31]). Results were grossly unaltered when sequentially excluding the studies with the 
largest weight, or when limiting meta-analysis to studies with rigorous confounding, or with 
in-person outcome assessment in combination with record data (Table 3). 
 
Among the 5 studies that reported estimates for both all-cause dementia and Alzheimer’s 
disease separately, the pooled effect estimate for Alzheimer’s disease only was slightly lower 
(RR 1.44 [0.95-2.16]; Figure 3), albeit with substantial heterogeneity across studies (I2 = 74% 
[35-90%]). Heterogeneity was somewhat reduced when applying a case definition of 
Alzheimer’s disease to the report of Adelborg et al. that was more in line with other studies, 
as also suggested by the authors in their original report (I2 55% [0-84%]).24 The pooled effect 
estimate thereby changed to 1.46 (95% CI 1.07-1.99). The funnel plot suggested studies with 
smaller effect estimates for CHF could have been underreported (Figure 4B; P-value from 
Egger test = 0.03), although again, asymmetry seemed less profound among the (limited 
number of) purposefully designed prospective population-based studies (Figure 4D).  
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Assessment of dementia varied across studies from registry data only, or at re-examination 
only, to re-examination with complementary surveillance of medical records (Table 2). Mean 
follow-up time ranged from 2 to 9.3 years, and the number of dementia cases included in 
the analyses ranged from 15 to 85,390. 
 
 

 

 

Figure 1. Flow diagram of the literature search. *For one study among Medicare participants in the United 
States,48 the authors could report only estimates for a composite measure of heart disease, and one Dutch 
population-based study excluded participants with clinical heart failure.37 §In the HYVET trial only 13 (0.4%) 
participants had heart failure at baseline.49 ♯Four articles described the associations of both coronary heart 
disease and heart failure with dementia. 
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Three studies reported CHD as a determinant for conversion from mild cognitive impairment 
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C H A P T E R  4 . 1  

168 

 
Fi

gu
re

 2
. C

or
on

ar
y 

he
ar

t d
is

ea
se

 a
nd

 d
em

en
tia

. F
or

es
t p

lo
ts

 sh
ow

 p
er

 st
ud

y 
an

d 
po

ol
ed

 a
ss

oc
ia

tio
ns

 o
f c

or
on

ar
y 

he
ar

t d
ise

as
e 

w
ith

 a
ll-

ca
us

e 
de

m
en

tia
 (l

ef
t)

 a
nd

 A
lzh

ei
m

er
’s

 d
ise

as
e 

(r
ig

ht
). 

  

 
Fi

gu
re

 3
. H

ea
rt

 fa
ilu

re
 a

nd
 d

em
en

tia
. F

or
es

t p
lo

ts
 sh

ow
 p

er
 st

ud
y 

an
d 

po
ol

ed
 a

ss
oc

ia
tio

ns
 o

f h
ea

rt
 fa

ilu
re

 w
ith

 a
ll-

ca
us

e 
de

m
en

tia
 (l

ef
t)

 a
nd

 
Al

zh
ei

m
er

’s
 d

ise
as

e 
(r

ig
ht

). 

H E A R T  D I S E A S E  

169 
 

 
Figure 4. Funnel plots for studies about coronary heart disease (A and C) and heart failure (B and D). The top 
row includes all studies (A and B); the bottom row shows only prospective population-based cohorts (C and D).
   

 Coronary heart disease 
Relative risk (95% CI) 

Heart failure 
Relative risk (95% CI) 

Overall pooled estimate 1.27 (1.07-1.50) 1.60 (1.19-2.13) 

Excluding studies by weight*   
-1 study 1.35 (1.25-1.46) 1.83 (1.44-2.33) 
-2 studies 1.30 (1.12-1.51) 1.82 (1.24-2.67) 
-3 studies 1.33 (1.12-1.60) 1.73 (1.10-2.72) 
-4 studies 1.32 (1.05-1.65) 1.64 (0.81-3.30) 
-5 studies 1.42 (1.09-1.85) n/a 
-6 studies 1.52 (1.12-2.07) n/a 
-7 studies 1.37 (0.99-1.91) n/a 
-8 studies 1.48 (0.99-2.22) n/a 
-9 studies 1.39 (0.76-2.55) n/a 
-10 studies 1.45 (0.52-4.02) n/a 

Quality criteria‡   
Confounding adjustment (score =2) 1.22 (1.03-1.45) 1.52 (1.16-1.99) 
Outcome assessment (score =2) 1.25 (1.06-1.48) 1.90 (1.46-2.47) 
Follow-up duration (score = 1) 1.30 (1.07-1.59) 1.52 (1.16-1.99) 

Table 3. Sensitivity analyses on the basis study weight and quality according to specified criteria. *sequential 
exclusion of the studies with the highest weight from the analyses; for the assigned weights per study please 
see Figure 2 and Figure 3; ‡for the quality scores by individual study please see Table 1. CI=confidence interval. 
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DISCUSSION 
 
In this comprehensive systematic review and meta-analysis of longitudinal studies, we 
compiled the current evidence on the association between CHD and future risk of dementia 
in 1,309,483 individuals from 16 cohort studies, and the association between CHF and future 
risk of dementia in 1,958,702 individuals from 7 cohorts. On the basis of available evidence, 
CHD and CHF are associated with mild to moderate increases in the risk of dementia.  
 
Despite these overall associations, there was considerable heterogeneity among included 
studies. This may in part be explained by study design, as consistent associations emerged 
from purposefully designed longitudinal studies, which could rely on in-person examinations 
for assessment of heart disease (e.g. using imaging data or ECG) and dementia. Much of the 
heterogeneity was, in fact, attributable to the results from one Danish registry.24,36 
Misclassification of exposure in registry studies may dilute the observed risk estimates, as 
could inaccuracy of the outcome assessment (in particular in the presence of false-positive 
diagnoses). Of note, the positive predictive values of a diagnosis of all-cause dementia and 
Alzheimer’s disease in this particular registry are 86% and 81%, respectively, whereas 
diagnostic sensitivity of registry data is often unknown.36 Although this heterogeneity could 
contribute to asymmetry of the funnel plots (and in fact more homogeneous study results 
went along with more symmetrical plots for CHD), we caution that the observed asymmetry, 
in particular for heart failure, could also reflect reporting bias. Funnel plots were design for 
assessment of randomised controlled trials, rather than observational studies, and their 
interpretation in the presence of methodological inconsistency and potential biases is 
challenging.23 This supports refining analysis on the basis of methodological rigour of original 
studies, or suspicion of true (biological) heterogeneity. In any case, the limited number of 
heart failure studies calls for additional evidence to further delineate its association with risk 
of dementia. 
   
For CHD, the assessment strategy differed between studies, most notably in the use of 
electrocardiography to confirm a diagnosis of MI. Objective confirmation of a diagnosis 
reduces information bias, could allow identification of asymptomatic MI,31 and provide 
information about infarct localisation. For CHF, only one study quantified cardiac function, 
using MRI, with the additional benefit of assessing cardiac dysfunction in relation to 
dementia on a continuous scale.12 A similar quantitative approach in the Rotterdam Study 
showed that diastolic dysfunction, as measured by echocardiography, was associated with 
an increased risk of dementia among 3,291 individuals without clinical CHF.37 As this report 
included asymptomatic individuals only, it was not included in the current meta-analysis. 
Nevertheless, these studies jointly illustrate the benefit of quantifying cardiac function in 
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relation to (markers and symptoms of cerebrovascular disease and) neurodegeneration, and 
suggest that potential detrimental effects of cardiac dysfunction on brain health are not 
limited to symptomatic CHF.  
 
Part of the observed heterogeneity between studies may have arisen from differences in 
outcome assessment and follow-up strategy. As eluded to above, apart from registry-based 
diagnosis,24,26 all studies incorporated interval assessments for diagnosis which ranged from 
every 6 months to every 4 years.  As individuals with (mild) cognitive impairment are less 
likely to attend study follow-up visits, shorter intervals to re-examination and supplementary 
surveillance strategies can contribute to higher diagnostic sensitivity in some studies 
compared to others. When examining Alzheimer’s disease as the most common subtype of 
dementia in meta-analysis, we faced substantial differences in means of subtype diagnosis 
between studies. For example, in the large Danish registry-based study, 34.6% of dementia 
cases were attributed to Alzheimer’s disease,24 compared to 61-81% in the population-based 
cohorts. The association between CHF and Alzheimer’s disease became stronger (adjusted 
HR 1.16 [1.14–1.20]), when the authors of the Danish study reclassified the large share of 
ICD-coded unspecified dementia as Alzheimer’s disease in a sensitivity analysis (resulting in 
77.7% of dementia being classified as Alzheimer’s disease). This highlights the importance of 
uniform criteria for case definition, as well as a lack of diagnostic certainty about dementia 
subtyping with various accumulating pathologies and the multifactorial aetiology of 
dementia and what is called (late-onset) Alzheimer’s disease. Notwithstanding various 
underlying neuropathology, a syndrome diagnosis of dementia provides a more consistent 
primary outcome measure in population studies, which is likely preferable for comparison 
over heterogeneous clinical disease subtypes. Most studies used the Diagnostic and 
Statistical Manual of Mental Disorders (DSM) criteria for all-cause dementia, although this 
wasn’t specified in some,11,14,32-34 or unverifiable given the registry-based nature of 
others.24,35-36  
 
Disease of the heart and brain are both common in the elderly population. This meta-
analysis suggests that this is no coincidental co-occurrence, but that heart and brain are in 
fact linked in such a way that being diagnosed with CHD or CHF predisposes to development 
of dementia. This might aid in identifying people prone to cognitive decline, and from an 
aetiological perspective emphasises the need to unravel the mechanisms underlying the link 
between heart disease and cognition, which may become all the more evident with 
improving life expectancy of patients with heart disease. Potential explanations include 
cerebral hypoperfusion and hypoxia (either due to cardiac arrhythmias or haemodynamic 
consequences of impaired cardiac function),38 cerebral ischaemia (e.g. thromboembolic 
complications),36,39 shared aetiology, effects of a pro-inflammatory state,40 direct effects of 
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natriuretic peptides,41 or related to (vascular) amyloid.42,43 Some of these could be specific to 
either CHD or CHF, while others may overlap. For instance, a substantial share of patients 
with CHD experiences decline in cardiac function as a consequence of ischaemic heart 
disease. CHF may thus be a mediator in the association between CHD and dementia, 
supported by higher risk estimates for CHF in general, as well as in individuals with (repeated 
admissions for) heart failure following myocardial infarction in one of the included studies.36 
Yet, other studies included in this meta-analysis investigated either determinant separately, 
precluding any firm conclusion about their contribution relative to one another. 
 
The vast majority of identified studies in this systematic review were community-based, and 
none of the study populations were recruited from cardiology clinics or coronary care units. 
This is in line with earlier observation that study of cognition in patients presenting to clinics 
with heart disease is scarce.9 Given the emerging link between heart disease and cognition, a 
multi-diagnostic approach that involves cardiologists, neurologists, and geriatricians may 
benefit risk stratification and medical decision-making, leading to tailored intervention of 
patients at particular high risk of cognitive decline or dementia.9,44 Increased attention for 
cognitive deficits in this at-risk population could aid in identifying potential differential 
effects of acute treatment strategies on cognition,45 and development of targeted, more 
effective preventive strategies. Such an approach would facilitate investigation of dementia 
risk by type (e.g. type 1 versus type 2 myocardial infarction, or CHF with preserved versus 
reduced ejection fraction),46 or severity of heart disease (e.g. by imaging or serum markers) 
to further unravel the biological underpinning of the presented associations. 
 
Strengths of our study include the comprehensive literature search, without any restriction 
in date or language of published studies. In addition, we formally assessed quality of studies, 
integrating recommendations for evaluating potential bias in cohort studies,20 and dementia 
research.40 Some limitations also need to be taken into account. First, none of the included 
studies enrolled participants instantly at time of CHD or CHF diagnosis, potentially causing 
selection bias. As more severely impaired patients would have been less likely to enrol at a 
later stage, this most likely resulted in underestimation of a causal association with 
dementia. An integrative approach of cognitive work-up along with secondary prevention 
from the moment of diagnosis may alleviate this limitation in future studies. Second, despite 
best efforts, we could not obtain risk estimates for Alzheimer’s disease from all studies, 
potentially leading to selection bias. Third, in the presence of substantial heterogeneity, 
random effects models can give disproportionate weight to smaller studies, rendering them 
not necessarily more conservative than fixed effects models. We believe that the anticipated 
(and observed) heterogeneity between studies in our systematic review merits the use of 
the former, but stress that with additional evidence emerging, periodic updates of this 
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report will be needed to refine risk estimates. At present, the number of included studies 
remains relatively limited, hampering interpretation of funnel plots, both visually and by 
means of formal statistical test,23 as well as identification of sources of heterogeneity 
through for example meta-regression. Fourth, associations between cardiac disease and risk 
of dementia may have changed over time with improved acute care and secondary 
prevention, emphasising the continuous need for contemporary studies.  Fifth, available 
evidence originates from a limited geographical range, warranting future studies that include 
individuals of non-European descent, and are embedded in healthcare systems beyond the 
United States or Europe.  
 
In conclusion, on the basis of currently available evidence from longitudinal studies, CHD and 
CHF are associated with a mild to moderately increased risk of developing dementia. 
However, substantial heterogeneity among studies and caution for reporting bias among 
heart failure studies emphasise the need for additional high-quality evidence to establish 
these associations, identify their potential biological underpinning, unravel characteristics of 
CHD and cardiac function that could impose higher risk of dementia, and eventually 
determine the effect of targeted preventive interventions.  
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from the moment of diagnosis may alleviate this limitation in future studies. Second, despite 
best efforts, we could not obtain risk estimates for Alzheimer’s disease from all studies, 
potentially leading to selection bias. Third, in the presence of substantial heterogeneity, 
random effects models can give disproportionate weight to smaller studies, rendering them 
not necessarily more conservative than fixed effects models. We believe that the anticipated 
(and observed) heterogeneity between studies in our systematic review merits the use of 
the former, but stress that with additional evidence emerging, periodic updates of this 
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report will be needed to refine risk estimates. At present, the number of included studies 
remains relatively limited, hampering interpretation of funnel plots, both visually and by 
means of formal statistical test,23 as well as identification of sources of heterogeneity 
through for example meta-regression. Fourth, associations between cardiac disease and risk 
of dementia may have changed over time with improved acute care and secondary 
prevention, emphasising the continuous need for contemporary studies.  Fifth, available 
evidence originates from a limited geographical range, warranting future studies that include 
individuals of non-European descent, and are embedded in healthcare systems beyond the 
United States or Europe.  
 
In conclusion, on the basis of currently available evidence from longitudinal studies, CHD and 
CHF are associated with a mild to moderately increased risk of developing dementia. 
However, substantial heterogeneity among studies and caution for reporting bias among 
heart failure studies emphasise the need for additional high-quality evidence to establish 
these associations, identify their potential biological underpinning, unravel characteristics of 
CHD and cardiac function that could impose higher risk of dementia, and eventually 
determine the effect of targeted preventive interventions.  
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ABSTRACT 
 
Aortic valve calcification (AVC) is a strong risk factor for cardiac disease and mortality. Its 
further association with covert brain infarcts suggests that AVC can have direct 
thromboembolic and hemodynamic consequences on the brain, which may also contribute 
to dementia. However, no published studies have investigated the relation between AVC 
and cognitive decline or dementia. We used computed tomography (CT) to quantify AVC in 
2428 non-demented participants of the population-based Rotterdam Study (mean age 70 
years, 52% women) who underwent CT between 2003 and 2006. Participants were followed 
for incident dementia until 2015, including detailed cognitive assessment at time of CT and 
after on average 6 years. We assessed correlation of AVC with calcification in other vessel 
beds, and determined cognitive decline and risk of dementia with AVC, using linear 
regression and Cox proportional hazard models. AVC-volume was moderately correlated 
with volumes of arterial calcification in the coronary arteries, the aortic arch, and the carotid 
arteries (Spearman’s correlation coefficients ranging from 0.29 to 0.32, P<0.01). During a 
median follow-up of 9.3 years, 160 participants developed dementia. We found no 
association between AVC and risk of all-cause dementia (hazard ratio [95% confidence 
interval]: 0.89 [0.63-1.26]). Presence of AVC was not associated with change in cognition on 
repeated cognitive assessment. We observed insufficient dementia cases to determine 
associations with pure vascular dementia. In conclusion, we found no evidence of an 
association of AVC with cognitive decline and risk of dementia during prolonged follow-up in 
the general population. 
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INTRODUCTION 
 
Aortic valve calcification (AVC) is a strong risk factor for cardiac disease and mortality.1,2 In 
addition, AVC has recently been associated with covert brain infarcts,3 which may indicate 
direct thromboembolic and hemodynamic consequences on the brain. Thromboembolism 
and haemodynamic impairment of brain perfusion are implicated in the pathophysiology of 
dementia, including Alzheimer’s disease,4,5 but no published studies have investigated 
whether AVC relates to cognition and dementia. We therefore investigated the association 
between AVC and risk of cognitive decline and dementia in a population-based setting. 
 
 
METHODS 
 
Study population 
This study was embedded in the ongoing Rotterdam Study,6 a prospective population-based 
cohort study in middle-aged and elderly persons. Participants are invited for interview and 
examinations at a dedicated research centre every 4 years. Between 2003 and 2006, all 
participants were invited to undergo computed tomography for the visualization of vascular 
calcifications in major arteries, including the aortic root where the aortic valves are located. 
In total 2,524 participants participated,7 of whom 44 (1.7%) were excluded because of 
prevalent dementia or insufficient cognitive screening at baseline. We were unable to 
measure AVC in 52 (2.1%) participants due to aortic valve replacement, image artifact due to 
a pacemaker or coronary stent implantation, or bad image acquisition, thus leaving 2,428 
(96.2%) participants for analysis in the present study.  
 
Assessment of AVC and arterial calcification 
We acquired non-contrast CT-examinations with a multidetector computed tomography 
(MDCT) scanner (Somatom Sensation 16/64, Siemens, Forchheim, Germany).7 Using an ECG-
gated cardiac imaging protocol, we visualized the aortic root including the aortic valve. We 
quantified AVC (mm3), located on the aortic valve leaflets, the base of the cusps, and the 
annulus,3,8 using dedicated commercially available software (Syngo.ViaCalciumScoring, 
Siemens, Germany). The same software was used for quantification of calcification in the 
coronary arteries, aortic arch, and extracranial carotid arteries. Intracranial carotid artery 
calcification was quantified using custom-made software, as described previously.9 

 
Assessment of cognition  
Participants underwent extensive cognitive assessment at time of CT and at one subsequent 
follow-up visit after on average 6 years. These cognitive assessments included a verbal 
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fluency task, a letter-digit substitution task, a word-learning test, the Stroop task, and the 
Purdue pegboard test.10 For each test, Z-scores were computed for each participant by 
dividing the difference between the individual cognitive test score and the population mean 
by the population standard deviation. We also derived a compound measure of global 
cognition by factor analysis, including all aforementioned tests.10 

 
Dementia screening and surveillance 
Participants were screened for dementia at baseline and subsequent centre visits using the 
Mini-Mental State Examination (MMSE) and the Geriatric Mental State Schedule (GMS) 
organic level.11 Those with MMSE<26 or GMS>0 underwent further investigation and 
informant interview including the Cambridge Examination for Mental Disorders of the 
Elderly. Additionally, the entire cohort was continuously under surveillance for dementia 
through electronic linkage of the study centre with medical records from general 
practitioners and the regional institute for outpatient mental healthcare. Available clinical 
neuroimaging data were reviewed when required for diagnosis of dementia subtype. A 
consensus panel headed by a consultant neurologist established the final diagnosis 
according to standard criteria for dementia (DSM-III-R), and Alzheimer’s disease (NINCDS-
ADRDA). Follow-up until January 2015 was near complete (96.5% of potential person-years). 
 
Other measurements 
Information on current smoking habits, and use of blood pressure-lowering or lipid-lowering 
medication was obtained by interview. Body mass index (BMI) was calculated from 
measurements of height and weight (weight(kg)/height2(m)). Systolic and diastolic blood 
pressure was assessed at the right arm and the mean of two measurements was used in the 
analyses. Serum total cholesterol, high-density lipoprotein (HDL) cholesterol, and glucose 
were measured from fasting blood samples. Diabetes was defined as fasting serum glucose 
levels ≥7.0 mmol/L or the use of anti-diabetic therapy. We determined history of coronary 
heart disease (i.e. previous myocardial infarction or revascularization procedure) and heart 
failure at baseline interview, with verification from medical records. 
 
Analysis  

Given the right-skewed distribution of AVC-volume, a natural-log transformation was 
performed after we added 1.0 mm3 to the original volumes in order to deal with participants 
with a naught calcium score [LN(AVC+1.0mm3)]. Missing data on covariates (maximum 5.7%) 
were handled using 5-fold multiple imputation. First, we assessed the correlation between 
AVC and arterial calcification in the coronary arteries, aortic arch, and carotid arteries. We 
then determined the association between presence of AVC and dementia, using Cox 
proportional hazards models adjusting for age and sex, and additionally in a second model 
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for various cardiovascular risk factors (body-mass index, systolic and diastolic blood 
pressure, use of blood-pressure lowering medication, diabetes, total cholesterol, high-
density lipoprotein cholesterol, use of lipid-lowering medication, smoking,  history of 
coronary heart disease,  history of heart failure, and APOE-ε4 genotype). In this model, 
participants were censored within the follow-up period at date of dementia diagnosis, date 
of death, date of loss to follow-up, or 1st January 2015, whichever came first. We verified 
that the proportional hazard assumption was met. Second, we calculated tertiles of AVC 
burden in those with AVC, and determined risk for each tertile compared to the absence of 
AVC. Finally, we determined change in cognitive test performance in relation to AVC, using 
linear regression, with adjustments for confounders as described above.  
 
Analyses were performed with IBM SPSS Statistics version 23 (IBM Corporation, Armonk, 
New York). Alpha level (type 1 error) was set at 0.05. 
 
 

Characteristics Study population 

Age, years 69.5 (±6.7) 
Female 1256 (51.7%) 
Body mass index, kg/m2 27.7 (±3.9) 
Systolic blood pressure, mmHg 147 (±20) 
Diastolic blood pressure, mmHg 80 (±11) 
Serum total cholesterol, mmol/L 5.7 (±1.0) 
Serum HDL cholesterol, mmol/L 1.4 (±0.4) 
Diabetes 305 (13.3%) 
Current smoking  374 (15.9%) 
Use of blood-pressure lowering agents 978 (40.9%) 
Use of lipid-lowering medication 594 (24.8%) 
History of coronary heart disease 197 (8.2%) 
History of heart failure 66 (2.7%) 
APOE ε4 carrier 620 (26.9%) 

Table 1. Population characteristics of the 2,428 participants. Values are means (±standard deviation) for 
continuous variables or absolute values (%) for categorical variables. HDL=high-density lipoprotein. 
 
 
RESULTS 
 
Table 1 shows the baseline characteristics of the study population. The mean age at time of 
CT was 69.5 years, and 51.7% of participants were women. Overall, the prevalence of AVC 
was 32.9%, but this strongly increased with age from 23.0% at age 60-69 to 70.6% in those 
≥90 years. Volume of AVC was correlated with volumes of arterial calcification in the 
coronary arteries, the aortic arch, and the carotid arteries (Spearman’s correlation 
coefficients ranging from 0.29 to 0.32, P<0.01). 
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During a median follow-up of 9.3 years (IQR 7.9-9.8), 160 participants were diagnosed with 
dementia, of whom 126 had Alzheimer’s disease. Presence of AVC was not associated with 
the risk of dementia, either (Table 2). Results were virtually similar for Alzheimer’s disease.  
 
Of 2,418 participants who had extensive cognitive assessment at baseline, 1,816 (85.0% of 
surviving, non-demented participants) had repeated cognitive assessment at follow-up 
(mean interval 6.0 years, SD 0.5). Presence of AVC was not associated with change in 
cognitive test performance on any of the performed tests, or with a measure of global 
cognition (Table 3). This was again similar in analyses per tertile of increasing burden of AVC. 
 

 All-cause dementia 
Ndem/Ntotal=160/2428 

Alzheimer’s Disease 
Ndem/Ntotal=126/2428 

 

 

Model I 
HR (95%CI) 

Model II 
HR (95%CI) 

Model I 
HR (95%CI) 

Model II 
HR (95%CI) 

Aortic valve calcification  
(presence vs. absence) 

0.89 (0.64-1.25) 0.89 (0.63-1.26) 0.88 (0.60-1.29) 0.85 (0.58-1.27) 

Per tertile of calcification*     
     T1 0.90 (0.55-1.49) 0.91 (0.54-1.52) 1.00 (0.59-1.71) 0.98 (0.56-1.72) 
     T2 0.89 (0.55-1.44) 0.87 (0.53-1.44) 0.89 (0.52-1.53) 0.83 (0.48-1.46) 
     T3 0.88 (0.55-1.41) 0.90 (0.56-1.46) 0.77 (0.45-1.32) 0.76 (0.43-1.34) 

Table 2. Aortic valve calcification and risk of dementia. *Tertiles of AVC compared to persons without AVC. 
Model I is adjusted for age and sex, whereas model II is adjusted for age, sex, body-mass index, systolic and 
diastolic blood pressure, use of blood-pressure lowering medication, diabetes, total cholesterol, high-density 
lipoprotein cholesterol, use of lipid-lowering medication, smoking,  history of coronary heart disease,  history of 
heart failure, and APOE-ε4 genotype. HR=hazard ratio; CI=confidence interval; 
 

 

 Presence of aortic valve calcification 

 Model I 
β (95% CI) 

Model II 
β (95% CI) 

Cognitive test   
    Letter-digit substitution task -0.011 (-0.099;0.076) 0.006 (-0.085;0.097) 
    Verbal fluency 0.011 (-0.089;0.111) 0.027 (-0.077;0.131) 
    Word-learning test 0.0004 (-0.110;0.111) 0.016 (-0.099;0.131) 
    Stroop -0.019 (-0.107;0.070) -0.022 (-0.114;0.070) 
    Purdue pegboard -0.017 (-0.169;0.135) 0.004 (-0.155;0.163) 

    G-factor 0.028 (-0.059;0.114) 0.038 (-0.051;0.127) 

Table 3. Aortic valve calcification and change in cognition. Change in standardized cognitive test scores for 
presence vs. absence of aortic valve calcification. Higher scores indicate better performance for all tests (i.e. 
Stroop scores are inverted). Model I is adjusted for age and sex, whereas model II is adjusted for age, sex, body-
mass index, systolic and diastolic blood pressure, use of blood-pressure lowering medication, diabetes, total 
cholesterol, high-density lipoprotein cholesterol, use of lipid-lowering medication, smoking,  history of 
coronary heart disease,  history of heart failure, APOE-ε4 genotype, and the intervals between CT and cognitive 
assessments. 
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DISCUSSION 
 
In this large population-based study we found no association of CT-quantified AVC with 
cognitive decline or risk of dementia during 10 years of follow-up. Although we are not 
aware of any other studies investigating AVC in relation to dementia, our findings are 
thought-provoking in view of the abundance of evidence linking vascular risk factors and 
atherosclerosis to dementia and Alzheimer’s disease .12 We found lower correlations of AVC 
with aortic, coronary and cerebral artery calcification, compared to previously described 
correlations of calcification among these other vessel beds.13 As arterial calcification in these 
vessel beds has been associated with dementia previously,13 our findings suggest that AVC 
might be a more localized process with, in part, different underlying pathophysiology. 
Shared risk factors between atherosclerosis and dementia might also contribute less to the 
development of AVC. In addition, direct thromboembolic complications of AVC may be too 
limited in duration or severity to result in significant neuronal injury. Nevertheless, with 
most severe calcification (i.e. stenosis) the brain may still suffer from hemodynamic 
impairment. Overall, our study sample was relatively healthy and the number of people with 
stenosis in our sample limited, and associations with valve stenosis may therefore be further 
explored in future observational studies. Although we were sufficiently powered to detect a 
moderate effect size of 1.5 with the overall sample for all-cause dementia (α=0.05, β=0.80), 
we observed insufficient cases of vascular dementia to assess their presumably stronger 
association with AVC.  
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ABSTRACT 
 
Low ADAMTS13 activity is associated with an increased risk of cardiovascular disease, which 
is generally attributed to its proteolytic effects on Von Willebrand factor (VWF). 
Cardiovascular health is an important determinant of cognitive decline, but the association 
of either VWF or ADAMTS13 with risk of dementia is unknown. Between 1997-2002, we 
measured VWF antigen and ADAMTS13 activity in 6055 participants of the population-based 
Rotterdam Study (mean age 69.3 years, 57.2% women). At baseline, 85 participants had 
dementia, and during 15 years of follow-up 821 developed dementia. Higher VWF was 
associated with prevalence and risk of dementia, unaffected by concurrent ADAMTS13 
activity, but estimates strongly attenuated over time and were no longer statistically 
significant at 4 years of follow-up (relative risks [95%CI] per standard deviation increase– 
cross-sectional: 1.37 [1.06-1.77], and longitudinal: 1.05 [0.97-1.14]). In contrast, low 
ADAMTS13 was associated with increased risk of dementia throughout follow-up (hazard 
ratio per SD decrease– 1.16 [1.06-1.28]), which alike for ischaemic stroke, was modified by 
the presence of diabetes (P-interaction=0.003). In conclusion, higher VWF and low 
ADAMTS13 activity are associated with increased risk of dementia, but differences in time-
course and lack of synergistic effects may indicate in part independent underlying 
mechanisms.  
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INTRODUCTION 
 
Von Willebrand factor (VWF) is a large multimeric glycoprotein with critical functions in 
haemostasis. Deficiency or dysfunction of VWF, known as Von Willebrand disease, can cause 
prolonged or excessive bleeding,1 whereas high levels of VWF antigen have been associated 
with increased risk of cardiovascular disease.2 In vivo effects of VWF largely depend on the 
proteolytic activity of ADAMTS13 (A Disintegrin And Metalloproteinase with a 
ThromboSpondin type 1 motif, member 13). ADAMTS13 cleaves large, haemostatically highly 
reactive VWF multimers into smaller, less active multimers. Consequently, high VWF may 
lead to a hypercoagulable state in particular when ADAMTS13 activity is low, and a 
combined measure of VWF and ADAMTS13 could thus more accurately capture the 
biological activity of VWF.3 We have previously shown that low activity of ADAMTS13 itself is 
associated with increased risk of cardiovascular disease,4-8 while the combination of VWF 
and ADAMTS13 appears indeed more strongly associated with stroke risk than what would 
be expected on the basis of the individual measurements.5  
 
Vascular disease and thrombosis play an important role in the aetiology of dementia, 
including Alzheimer’s disease.9 Accordingly, a recent meta-analysis of cross-sectional studies 
concluded that VWF antigen levels are higher in patients with dementia than in controls.10 
However, of two studies that assessed the risk of dementia by VWF,11,12 neither found 
baseline VWF antigen levels associated with dementia risk after 4 and 17 years of follow-up, 
respectively, albeit the latter was hampered by substantial attrition (50%) and lack of 
cognitive screening at baseline. Apart from methodological considerations, release of VWF 
from damaged endothelial cells in later stages of cognitive impairment may explain why 
profound cross-sectional associations do not extend to longer term follow-up. However, the 
time-course of the association between VWF and dementia remains unknown, and although 
ADAMTS13 could aid in disentangling haemostatic effects from associations marking 
endothelial damage, no published studies about VWF and dementia took into account 
concurrent ADAMTS13 activity.  
 
While VWF is the only known substrate for ADAMTS13, several studies suggest that 
ADAMTS13 might have functions beyond VWF cleavage. Suggested roles include 
inflammation, angiogenesis, and extracellular matrix integrity,13 each of which have been 
implicated also in the aetiology of dementia.14-16 A versatile role of ADAMTS13 was further 
suggested, when we recently showed that high activity of ADAMTS13 relates to a higher risk 
of diabetes in the general population.17 The underlying mechanisms remain elusive, but 
these studies jointly highlight the need for investigation of ADAMTS13 in the context of, as 
well as beyond its proteolytic activity of VWF.  
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We aimed to determine the cross-sectional and long-term associations of VWF and 
ADAMTS13 with cognitive decline and dementia risk in a population-based study. We 
investigated independent and synergistic effects of VWF and ADAMTS13, and explored these 
associations in the context of prior studies linking ADAMTS13 to diabetes, angiogenesis, and 
extracellular matrix integrity. 
 
 
METHODS 
 
Study population 
This study is part of the Rotterdam Study, a large ongoing population-based cohort study in 
the Netherlands, with an initial study population of 7,983 participants aged ≥55 years from 
the Ommoord area, a suburb of Rotterdam. In 2000, the cohort was expanded with an 
additional 3011 participants who moved into the study area or reached age 55. The 
Rotterdam Study methods have been described previously.18 Briefly, participants were 
interviewed at home and subsequently examined at the research centre for baseline 
assessment from 1990 to 1993 (baseline cohort) and 2000 to 2002 (expansion cohort), with 
follow-up examinations every 4 years. Citrated plasma samples were collected at the third 
visit of the original cohort (1997-1999), and the first visit of the expansion cohort (2000-
2002), which are the baseline of the current study. Of 9,030 surviving participants at the 
time, 7,510 participated in this examination cycle, of whom 6,735 visited the study centre. 
Of these, 43 had insufficient cognitive screening to determine dementia status.  
 
Measurement of Von Willebrand factor antigen and ADAMTS13 activity 
Fasting venous blood samples were taken at the research centre, and citrated plasma was 
stored at –80°C. We determined VWF antigen with an in-house enzyme-linked 
immunosorbent assay using polyclonal rabbit antihuman VWF antibodies (DakoCytomation, 
Glostrop, Denmark) for catching and tagging. The intra-assay coefficient of variation was 
5.8% and the inter-assay coefficient of variation was 7.8%. We measured ADAMTS13 activity 
using a kinetic assay based on the fluorescence resonance energy transfer substrate VWF73 
(FRETSVWF73) assay.19 This assay uses a peptide containing the ADAMTS13 cleavage site of 
VWF, and thus captures variation in the VWF cleavage rate determined by ADAMTS13 levels 
and structure. Plasma samples were measured against a reference curve of serial dilutions of 
normal human plasma defined to have an ADAMTS13 activity of 1 IU/mL, and we expressed 
ADAMTS13 activity as a percentage of this. Ten percent of the samples were retested and all 
were within 25% variation. From these measurements, we also calculated the ratio between 
ADAMTS13 activity and VWF antigen levels. 
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Cognitive function assessment 
Participants underwent detailed tests to determine cognitive function, comprising the 
Stroop test (error adjusted time in seconds taken for completing a reading/colour naming 
interference task), the letter-digit substitution task (number of correct digits in 1 minute), 
and the verbal fluency test (number of animal species within 1 minute).20 Cognitive function 
was assessed at baseline (i.e. time of blood sampling) and at three subsequent follow-up 
examinations (after a mean follow-up of 4.4 (SD 0.6), 10.8 (SD 0.6), and 15.4 (SD 0.7) years, 
respectively). To obtain a composite measure of test performance, we calculated the g-
factor, which explained approximately 61% of variance in cognitive test scores at each 
examination round in our population. For each participant, Z-scores were calculated for each 
test separately, by dividing the difference between individual test score and population 
mean by the population standard deviation. 
 
Dementia screening and surveillance 
Participants were screened for dementia at baseline and subsequent centre visits using the 
Mini-Mental State Examination (MMSE) and the Geriatric Mental State Schedule (GMS) 
organic level.21 Those with MMSE<26 or GMS>0 underwent further investigation and 
informant interview including the Cambridge Examination for Mental Disorders of the 
Elderly. Additionally, the entire cohort was continuously under surveillance for dementia 
through electronic linkage of the study centre with medical records from general 
practitioners and the regional institute for outpatient mental healthcare. Available clinical 
neuroimaging data were reviewed when required for diagnosis of dementia subtype. A 
consensus panel led by a consultant neurologist established the final diagnosis according to 
standard criteria for dementia (DSM-III-R), and Alzheimer’s disease (NINCDS-ADRDA). 
 
Measurement of other blood markers 
In a subset of 1,075 non-demented participants, we measured at baseline 150 plasma 
markers via multiplex immunoassay on human multianalyte profiles in the fasting blood 
samples collected at baseline (Myriad RBM Inc., Austin TX, USA; http://rbm.myriad.com). Of 
these, we selected markers with an identified role in angiogenesis (i.e. angiopoietin-2 (ANG-
2), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), 
transforming growth factors α and β (TGF-α, TGF-β)) or related to the extracellular matrix 
(i.e. matrix metalloproteinases MMP-2, MMP-3, and MMP-9, tissue inhibitor of 
metalloproteinase-1 (TIMP-1), Tenascin-C, connective tissue growth factor (CTGF)), based on 
suggested roles of ADAMTS13 beyond regulation of thrombosis.(13) The assay did not pass 
quality control (>20% unmeasurable) for TGF-α, TGF-β, MMP-2, MMP-9 and CTGF, leaving 6 
markers for analysis (all with measurements in ≥92.4% of participants). 
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Other measurements 
We assessed smoking habits and use of antihypertensive, lipid-lowering, glucose lowering, 
and antithrombotic (i.e. coumarine derivatives or platelet inhibitors) medication at baseline 
by interview. Blood pressure was measured with a random-zero sphygmomanometer. 
Fasting serum lipid levels, C-reactive protein (CRP) and fibrinogen were measured at 
baseline. Diabetes, prediabetes and normoglycaemia were defined according to WHO 
guidelines.22 APOE genotype was determined using polymerase chain reaction on coded 
DNA samples (baseline cohort), or using a bi-allelic TaqMan assay (rs7412 and rs429358; 
expansion cohort). ABO blood group antigen phenotypes were reconstructed by haplotype 
analysis of single nucleotide polymorphisms (rs8176749, rs8176704, and rs505922), and 
classified into O and non-O. We assessed history of stroke and myocardial infarction by 
interview, consultation of medical records, and electrocardiography.  
 
Analysis 
Because of a right-skewed distribution of VWF and the ADAMTS13:VWF-ratio, we performed 
a natural logarithmic transformation to obtain a roughly normal distribution of the data. We 
computed Z-scores for each individual by dividing the difference between the individual 
value and the population mean by the population standard deviation.  
 
Missing covariate data (15.0% for ABO blood type, and <5.0% for all other covariates) were 
imputed using fivefold multiple imputation. Distribution of covariates was similar in the 
imputed versus non-imputed dataset. All analyses were adjusted for age, sex, and study 
subcohort. In a second model we further adjusted for systolic and diastolic blood pressure, 
use of antihypertensive medication, serum total cholesterol, high-density lipoprotein (HDL) 
cholesterol and triglycerides, use of lipid-lowering medication, body mass index, diabetes, 
creatinine, CRP, fibrinogen, ABO blood type, and use of antithrombotic medication. 
 
We determined the association of VWF and ADAMTS13 with prevalence and incidence of 
dementia, using logistic regression and Cox proportional hazard models, respectively. As the 
proportional hazard assumption was violated for VWF, we also determined associations with 
dementia risk per year increase in follow-up. We determined risk of dementia per standard 
deviation (SD) increase as well as per quartile of VWF, ADAMTS13, and their ratio. In view of 
previously suggested threshold effects of ADAMTS13, we also compared the lowest quartile 
of ADAMTS13 to the highest three quartiles altogether.2 We assessed effect modification by 
(pre-)diabetes, by testing for multiplicative interaction in the fully adjusted Cox model. We 
repeated the analysis after excluding participants with prevalent myocardial infarction or 
stroke, while censoring at time of incident myocardial infarction or stroke in the fully 
adjusted model. We performed further sensitivity analyses, 1) for Alzheimer’s disease only, 
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2) stratifying by the mean age of the study population (i.e. 69.3 years), 4) stratifying by sex, 
and 5) stratifying by blood type O versus non-O. 
 
We then determined the association of VWF levels and ADAMTS13 activity with change in 
scores on cognitive assessment during follow-up, using linear mixed models. We fitted a 
model (restricted maximum likelihood) to the g-factor of cognitive scores, including age, sex, 
follow-up time, time*age, VWF/ADAMTS13, and time*VWF/ADAMTS13 in the model. We 
chose a diagonal covariance structure (heterogeneous variance and zero correlation 
between elements) for the random effects, including a random intercept and follow-up time, 
and added other covariates in agreement with the fully adjusted model described above. We 
repeated the analysis for all cognitive tests, stratified by diabetic status, and limited to the 
1st, 2nd, and 3rd follow-up examination, respectively. 
 
Finally, in the subset of participants with immunoassay data, we determined correlations of 
ADAMTS13 with ANG-2, VEGF, PDGF, MMP-3, TIMP-1, and Tenascin-C, using linear 
regression (of natural log-transformed values if so required to obtain normal distributions of 
the data). Values exceeding ±3.5 standard deviations from the mean were excluded. We 
fitted univariable models, and additional models including age, sex, and each of the other 
biomarkers, whilst applying the Benjamini-Hochberg correction for multiple testing.  
 
All analyses were done using SPSS Statistics 21.0 (IBM Corp, Armonk, NY, USA) or R statistical 
software 3.1.1 (package ‘nlme’). Alpha level was set at 0.05. 
 
 
RESULTS 
 
Among 6,692 eligible participants, we could not determine VWF antigen in 380 participants 
and ADAMTS13 activity in 628 participants, mainly due to technical reasons or insufficient 
blood sampling, leaving 6055 (90.5%) participants with both measures for analyses. Baseline 
characteristics of the study population are presented in Table 1. 
 
At baseline, 85 participants had dementia, of whom 68 had Alzheimer’s disease. Participants 
with dementia had higher VWF antigen levels and lower ADAMTS13 activity than individuals 
without dementia (Table 2). Consequently, the ADAMTS13:VWF ratio was lower in 
individuals with dementia, but ADAMTS13 did not modify the association of VWF with 
dementia (Table 2; P-interaction=0.93), and adjustment for ADAMTS13 did not change VWF 
estimates. Associations of VWF and ADAMTS13 with dementia were mildly attenuated for 
Alzheimer’s disease only, and broadly unaltered by excluding cardiovascular disease.  
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dementia risk per year increase in follow-up. We determined risk of dementia per standard 
deviation (SD) increase as well as per quartile of VWF, ADAMTS13, and their ratio. In view of 
previously suggested threshold effects of ADAMTS13, we also compared the lowest quartile 
of ADAMTS13 to the highest three quartiles altogether.2 We assessed effect modification by 
(pre-)diabetes, by testing for multiplicative interaction in the fully adjusted Cox model. We 
repeated the analysis after excluding participants with prevalent myocardial infarction or 
stroke, while censoring at time of incident myocardial infarction or stroke in the fully 
adjusted model. We performed further sensitivity analyses, 1) for Alzheimer’s disease only, 
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scores on cognitive assessment during follow-up, using linear mixed models. We fitted a 
model (restricted maximum likelihood) to the g-factor of cognitive scores, including age, sex, 
follow-up time, time*age, VWF/ADAMTS13, and time*VWF/ADAMTS13 in the model. We 
chose a diagonal covariance structure (heterogeneous variance and zero correlation 
between elements) for the random effects, including a random intercept and follow-up time, 
and added other covariates in agreement with the fully adjusted model described above. We 
repeated the analysis for all cognitive tests, stratified by diabetic status, and limited to the 
1st, 2nd, and 3rd follow-up examination, respectively. 
 
Finally, in the subset of participants with immunoassay data, we determined correlations of 
ADAMTS13 with ANG-2, VEGF, PDGF, MMP-3, TIMP-1, and Tenascin-C, using linear 
regression (of natural log-transformed values if so required to obtain normal distributions of 
the data). Values exceeding ±3.5 standard deviations from the mean were excluded. We 
fitted univariable models, and additional models including age, sex, and each of the other 
biomarkers, whilst applying the Benjamini-Hochberg correction for multiple testing.  
 
All analyses were done using SPSS Statistics 21.0 (IBM Corp, Armonk, NY, USA) or R statistical 
software 3.1.1 (package ‘nlme’). Alpha level was set at 0.05. 
 
 
RESULTS 
 
Among 6,692 eligible participants, we could not determine VWF antigen in 380 participants 
and ADAMTS13 activity in 628 participants, mainly due to technical reasons or insufficient 
blood sampling, leaving 6055 (90.5%) participants with both measures for analyses. Baseline 
characteristics of the study population are presented in Table 1. 
 
At baseline, 85 participants had dementia, of whom 68 had Alzheimer’s disease. Participants 
with dementia had higher VWF antigen levels and lower ADAMTS13 activity than individuals 
without dementia (Table 2). Consequently, the ADAMTS13:VWF ratio was lower in 
individuals with dementia, but ADAMTS13 did not modify the association of VWF with 
dementia (Table 2; P-interaction=0.93), and adjustment for ADAMTS13 did not change VWF 
estimates. Associations of VWF and ADAMTS13 with dementia were mildly attenuated for 
Alzheimer’s disease only, and broadly unaltered by excluding cardiovascular disease.  
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Characteristics Study population 

Age, years 69.3 (±8.2) 
Women 3,461 (57.2) 
Systolic blood pressure, mmHg 143 (±21) 
Diastolic blood pressure, mmHg 77 (±11) 
Antihypertensive medication 2,017 (35.0) 
Pre-diabetes  1,663 (28.1) 
Diabetes 744 (12.6) 
Serum cholesterol, mmol/L 5.82 (±0.98) 
Serum HDL cholesterol, mmol/L 1.39 (±0.39) 
Serum triglycerides, mmol/L (median, IQR) 1.35 (1.03-1.81) 
Lipid-lowering medication 746 (12.8) 
Smoking  
    Former 2,958 (49.3) 
    Current 1,032 (17.2) 
Creatinine, mg/dL 0.89 (±0.21) 
Body-mass index, kg/m2 26.9 (±4.0) 
History of cardiovascular disease 283 (4.7) 
Anti-thrombotic medication 1,135 (18.7) 
APOE genotype  
     ε3/3 3,389 (58.1) 
     ε2/2 or ε2/3 821 (14.1) 
     ε2/4 or ε3/4, ε4/4 1,627 (27.9) 
Von Willebrand factor, IU/mL (median, IQR) 1.20 (0.93-1.60) 
ADAMTS13, % 91.5 (±17.7) 
Fibrinogen, g/L (median, IQR) 3.8 (3.3-4.4) 
C-reactive protein, mg/mL (median, IQR) 1.8 (0.7-3.7) 
Blood type O 2348 (45.6) 

Table 1. Baseline characteristics of the 6,055 participants. Data are presented as frequency (%) for categorical, 
and mean±standard deviation for continuous variables, unless indicated otherwise; IQR=interquartile range. 
 
 
Of 5,970 non-demented participants at baseline, 821 participants were diagnosed with 
dementia during a mean follow-up of 11.6 years (follow-up was complete for 97.5% of 
potential person years). Of all dementia diagnoses, 671 were due to Alzheimer’s disease, and 
154 were preceded by myocardial infarction or a stroke. At baseline, 5,844/5,970 (97.9%) 
participants underwent extensive cognitive assessment, of whom 4,582 (78.4%) underwent 
at least two assessments, and 2,934 (50.2%) attended at least three examinations. 
 

Overall, VWF antigen levels were not associated with risk of dementia (adjusted HR per SD 
increase: 1.05, 0.97-1.14). VWF levels were, however, associated with short-term risk of 
dementia, but these associations attenuated over time and were no longer statistically 
significant beyond 4 years of follow-up (Figure 1A). Similarly, associations of VWF with 
cognitive test performance at baseline extended to the first re-examination at 4.4 years, but 
not thereafter (Figure 1B). The associations of VWF with cognitive decline and risk of 
dementia were not affected by concurrent ADAMTS13 activity (P-value for interaction of 
VWF with ADAMTS13 = 0.58 for all-cause dementia, and 0.85 for the g-factor). 
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Characteristics Study population 

Age, years 69.3 (±8.2) 
Women 3,461 (57.2) 
Systolic blood pressure, mmHg 143 (±21) 
Diastolic blood pressure, mmHg 77 (±11) 
Antihypertensive medication 2,017 (35.0) 
Pre-diabetes  1,663 (28.1) 
Diabetes 744 (12.6) 
Serum cholesterol, mmol/L 5.82 (±0.98) 
Serum HDL cholesterol, mmol/L 1.39 (±0.39) 
Serum triglycerides, mmol/L (median, IQR) 1.35 (1.03-1.81) 
Lipid-lowering medication 746 (12.8) 
Smoking  
    Former 2,958 (49.3) 
    Current 1,032 (17.2) 
Creatinine, mg/dL 0.89 (±0.21) 
Body-mass index, kg/m2 26.9 (±4.0) 
History of cardiovascular disease 283 (4.7) 
Anti-thrombotic medication 1,135 (18.7) 
APOE genotype  
     ε3/3 3,389 (58.1) 
     ε2/2 or ε2/3 821 (14.1) 
     ε2/4 or ε3/4, ε4/4 1,627 (27.9) 
Von Willebrand factor, IU/mL (median, IQR) 1.20 (0.93-1.60) 
ADAMTS13, % 91.5 (±17.7) 
Fibrinogen, g/L (median, IQR) 3.8 (3.3-4.4) 
C-reactive protein, mg/mL (median, IQR) 1.8 (0.7-3.7) 
Blood type O 2348 (45.6) 

Table 1. Baseline characteristics of the 6,055 participants. Data are presented as frequency (%) for categorical, 
and mean±standard deviation for continuous variables, unless indicated otherwise; IQR=interquartile range. 
 
 
Of 5,970 non-demented participants at baseline, 821 participants were diagnosed with 
dementia during a mean follow-up of 11.6 years (follow-up was complete for 97.5% of 
potential person years). Of all dementia diagnoses, 671 were due to Alzheimer’s disease, and 
154 were preceded by myocardial infarction or a stroke. At baseline, 5,844/5,970 (97.9%) 
participants underwent extensive cognitive assessment, of whom 4,582 (78.4%) underwent 
at least two assessments, and 2,934 (50.2%) attended at least three examinations. 
 

Overall, VWF antigen levels were not associated with risk of dementia (adjusted HR per SD 
increase: 1.05, 0.97-1.14). VWF levels were, however, associated with short-term risk of 
dementia, but these associations attenuated over time and were no longer statistically 
significant beyond 4 years of follow-up (Figure 1A). Similarly, associations of VWF with 
cognitive test performance at baseline extended to the first re-examination at 4.4 years, but 
not thereafter (Figure 1B). The associations of VWF with cognitive decline and risk of 
dementia were not affected by concurrent ADAMTS13 activity (P-value for interaction of 
VWF with ADAMTS13 = 0.58 for all-cause dementia, and 0.85 for the g-factor). 
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Low ADAMTS13 activity was associated with an increased risk of dementia (Table 3), with 
similar effect estimates throughout follow-up. The association was modified by the presence 
of impaired fasting glucose or diabetes (P-interaction=0.003), such that low activity of 
ADAMTS13 related to higher risk of dementia primarily in non-diabetics, but not in those 
with (pre-)diabetes (Table 3). This opposite direction of effect was seen for impaired fasting 
glucose and diabetes, and unaffected by excluding individuals on antidiabetic medication. 
Risk estimates of ADAMTS13 itself were consistently stronger than those of the 
ADAMTS13:VWF ratio (data not shown). In contrast to ADAMTS13 there was no interaction 
between (pre-)diabetes and VWF on dementia risk (P-value for interaction=0.99). 
 
ADAMTS13 was associated with more rapid decline in cognitive test performance during 15 
years of follow-up (Figure 2), again most profound in individuals without diabetes. The 
ADAMTS13:VWF ratio was also associated with change in cognitive test performance, with 
similar effect estimates, except for a somewhat stronger association with the Stroop test. 
These associations were broadly unaltered after excluding participants who developed 
dementia during follow-up.  
 
 

 
Figure 2. ADAMTS13 activity and change in cognitive test performance. Change in cognitive performance 
during four consecutive examination rounds, expressed as change per 10 years relative to the highest quartile 
of ADAMTS13, and comparing low versus normal ADAMTS13 activity. Lower scores reflect worse performance 
for all tests. Results are from the fully adjusted model. 
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Low ADAMTS13 activity was associated with an increased risk of dementia (Table 3), with 
similar effect estimates throughout follow-up. The association was modified by the presence 
of impaired fasting glucose or diabetes (P-interaction=0.003), such that low activity of 
ADAMTS13 related to higher risk of dementia primarily in non-diabetics, but not in those 
with (pre-)diabetes (Table 3). This opposite direction of effect was seen for impaired fasting 
glucose and diabetes, and unaffected by excluding individuals on antidiabetic medication. 
Risk estimates of ADAMTS13 itself were consistently stronger than those of the 
ADAMTS13:VWF ratio (data not shown). In contrast to ADAMTS13 there was no interaction 
between (pre-)diabetes and VWF on dementia risk (P-value for interaction=0.99). 
 
ADAMTS13 was associated with more rapid decline in cognitive test performance during 15 
years of follow-up (Figure 2), again most profound in individuals without diabetes. The 
ADAMTS13:VWF ratio was also associated with change in cognitive test performance, with 
similar effect estimates, except for a somewhat stronger association with the Stroop test. 
These associations were broadly unaltered after excluding participants who developed 
dementia during follow-up.  
 
 

 
Figure 2. ADAMTS13 activity and change in cognitive test performance. Change in cognitive performance 
during four consecutive examination rounds, expressed as change per 10 years relative to the highest quartile 
of ADAMTS13, and comparing low versus normal ADAMTS13 activity. Lower scores reflect worse performance 
for all tests. Results are from the fully adjusted model. 
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In further sensitivity analyses, associations of VWF and ADAMTS13 with dementia were 
similar for Alzheimer’s disease only, and unaffected by excluding those with prevalent 
cardiovascular disease and censoring at time of myocardial infarction or stroke during 
follow-up (Figure 3). We found no evidence of effect modification by age at blood sampling, 
sex, or ABO blood type (Figure 3; all P-values for interaction≥0.15). 
 
Among a random subset of 1,075 participants with immunoassay biomarker measurements, 
lower ADAMTS13 activity was significantly associated with higher levels of VEGF, MMP-3, 
and Tenascin-C, but not ANG-2 and PDGF (Table 4). The univariable association between 
MMP-3 and ADAMTS13 attenuated after adjustment for age and sex, but differed 
substantially by concurrent levels of TIMP-1, such that associations were strongest in the 
presence of high TIMP-1 (0.31 [-1.55;2.17] below the median of TIMP-1 versus -2.93 [-4.96;-
1.17] above the median; P-value for interaction=0.01). A similar interaction was seen 
between Tenascin-C and TIMP-1 (-0.68 [-2.16;0.81] below the median, versus -2.09 [-3.57;-
0.61] above the median; P-value for interaction=0.05). 
 
 
  Model I 

β (95% CI) 
Model II 
β (95% CI) 

ANG-2  0.01 (-1.25; 1.27) 0.72 (-0.62; 2.06) 
PDGF 0.64 (-0.41; 1.68) 0.14 (-0.90; 1.19) 
VEGF -1.66 (-3.07; -0.25)* -1.83 (-3.33; -0.34)* 
MMP-3 -4.03 (-5.05; -3.00)*† -1.37 (-2.64; -0.10)† 
Tenascin-C -1.74 (-2.78; -0.70)*† -1.42 (-2.46; -0.37)*† 
TIMP-1 -1.31 (-2.47; -0.14)*† 1.40 (0.11; 2.69)† 

Table 4. ADAMTS13 and selected markers of angiogenesis and extracellular matrix integrity. Values represent 
change in ADAMTS13 activity per standard deviation increase in the specific marker. Model I is a univariable 
linear regression; model II also includes age, sex, and all other biomarkers. *statistically significant at 0.05 level 
after correction for multiple testing; †=the effect estimates for the interaction of TIMP-1 with MMP-3 and 
Tenascin-C are described in the text. ANG-2=angiopoietin-2; PDGF=platelet-derived growth factor; 
VEGF=vascular endothelial growth factor; MMP-3=matrix metalloproteinase-3; TIMP-1=tissue inhibitor of 
metalloproteinases-1. 
 
 
DISCUSSION 
 
In this large population-based study, we found that higher VWF antigen levels are associated 
with prevalence and short-term, but not long-term risk of dementia. Low ADAMTS13 activity 
is associated with dementia risk during prolonged follow-up, with data suggesting an 
interactive mechanism between ADAMTS13 and diabetes in the development of dementia. 
We did not observe synergistic effects of VWF and ADAMTS13 activity, which might indeed 
indicate in part independent underlying mechanisms.  



    

C H A P T E R  4 . 4  

218 

 
O

ve
ra

ll 
st

ud
y 

po
pu

la
tio

n 
 

Fr
ee

 o
f (

pr
e-

)d
ia

be
te

s 
 

W
ith

 (p
re

-)d
ia

be
te

s 

AD
AM

TS
13

 a
ct

iv
ity

 
n d

em
/N

to
t 

HR
 (9

5%
 C

I) 
 

n d
em

/N
to

t 
HR

 (9
5%

 C
I) 

 
n d

em
/N

to
t 

HR
 (9

5%
 C

I) 

Pe
r q

ua
rt

ile
 

 
 

 
 

 
 

 
 

   
   

 Q
1 

<8
0.

6%
 

23
9/

1,
49

2 
1.

16
 (0

.9
4-

1.
43

) 
 

19
0/

10
81

 
1.

51
 (1

.1
6-

1.
95

) 
 

49
/4

01
 

0.
64

 (0
.4

3-
0.

95
) 

   
   

 Q
2 

80
.6

-9
1.

2%
 

21
0/

1,
49

3 
1.

00
 (0

.8
2-

1.
23

) 
 

15
8/

10
88

 
1.

22
 (0

.9
4-

1.
57

) 
 

51
/3

89
 

0.
67

 (0
.4

6-
0.

97
) 

   
   

 Q
3 

91
.2

-1
01

.9
%

 
19

1/
1,

49
3 

0.
85

 (0
.6

9-
1.

04
) 

 
13

3/
10

95
 

0.
90

 (0
.6

9-
1.

17
) 

 
58

/3
91

 
0.

77
 (0

.5
4-

1.
10

) 
   

   
 Q

4 
>1

01
.9

%
 

18
1/

1,
49

2 
RE

FE
RE

NC
E 

 
10

6/
99

5 
RE

FE
RE

NC
E 

 
74

/4
82

 
RE

FE
RE

NC
E 

Q
1 

ve
rs

us
 Q

2-
4 

 
1.

23
 (1

.0
5-

1.
44

) 
 

 
1.

44
 (1

.2
0-

1.
73

) 
 

 
0.

81
 (0

.5
8-

1.
13

) 
Pe

r S
D 

de
cr

ea
se

 
82

1/
5,

97
0 

1.
06

 (0
.9

8-
1.

15
) 

 
58

7/
42

59
 

1.
16

 (1
.0

6-
1.

28
) 

 
23

2/
16

63
 

0.
90

 (0
.7

9-
1.

03
) 

Ta
bl

e 
3.

 
Ba

se
lin

e 
AD

AM
TS

13
 in

 re
la

tio
n 

to
 th

e 
ris

k 
of

 d
em

en
tia

 in
 th

e 
ov

er
al

l p
op

ul
at

io
n,

 a
nd

 s
tr

at
ifi

ed
 b

y 
(p

re
-)d

ia
be

tic
 s

ta
tu

s.
 T

he
 m

od
el

 is
 a

dj
us

te
d 

fo
r 

ag
e,

 s
ex

, s
tu

dy
 s

ub
co

ho
rt

, s
m

ok
in

g,
 s

ys
to

lic
 a

nd
 d

ia
st

ol
ic

 b
lo

od
 p

re
ss

ur
e,

 a
nt

ih
yp

er
te

ns
iv

e 
m

ed
ic

at
io

n,
 s

er
um

 c
ho

le
st

er
ol

, H
DL

 c
ho

le
st

er
ol

 a
nd

 t
rig

ly
ce

rid
es

, 
lip

id
-lo

w
er

in
g 

m
ed

ic
at

io
n,

 b
od

y 
m

as
s 

in
de

x,
 (

pr
e-

)d
ia

be
te

s 
(if

 a
pp

lic
ab

le
), 

cr
ea

tin
in

e,
 a

nt
ith

ro
m

bo
tic

 m
ed

ic
at

io
n,

 C
RP

, 
fib

rin
og

en
, 

an
d 

AP
O

E 
ge

no
ty

pe
. 

HR
=h

az
ar

d 
ra

tio
; C

I=
co

nf
id

en
ce

 in
te

rv
al

; n
de

m
=n

um
be

r 
of

 d
em

en
tia

 c
as

es
 a

nd
 N

to
t=

nu
m

be
r 

of
 in

di
vi

du
al

s 
in

 g
ro

up
, p

re
se

nt
ed

 f
or

 n
on

-im
pu

te
d 

da
ta

 (
m

iss
in

g 
di

ab
et

es
 st

at
us

, n
=4

8)
 

 
     

   
 

Fi
gu

re
 3

. S
en

si
tiv

ity
 a

nd
 s

ub
gr

ou
p 

an
al

ys
es

 fo
r 

th
e 

as
so

ci
at

io
n 

of
 V

on
 W

ill
eb

ra
nd

 fa
ct

or
 (V

W
F)

 a
nd

 A
DA

M
TS

13
 w

ith
 r

isk
 o

f d
em

en
tia

. F
or

 a
ge

, t
he

 p
op

ul
at

io
n 

w
as

 s
tr

at
ifi

ed
 a

t 
th

e 
m

ed
ia

n 
ag

e 
of

 6
9.

3 
ye

ar
s.

 C
VD

 in
cl

ud
es

 c
or

on
ar

y 
he

ar
t 

di
se

as
e 

an
d 

st
ro

ke
. H

R=
ha

za
rd

 r
at

io
 f

ro
m

 f
ul

ly
 a

dj
us

te
d 

m
od

el
; C

I=
co

nf
id

en
ce

 
in

te
rv

al
; S

D=
st

an
da

rd
 d

ev
ia

tio
n.

 

V O N  W I L L E B R A N D  F A C T O R  A N D  A D A M T S 1 3  
 

219 
 

In further sensitivity analyses, associations of VWF and ADAMTS13 with dementia were 
similar for Alzheimer’s disease only, and unaffected by excluding those with prevalent 
cardiovascular disease and censoring at time of myocardial infarction or stroke during 
follow-up (Figure 3). We found no evidence of effect modification by age at blood sampling, 
sex, or ABO blood type (Figure 3; all P-values for interaction≥0.15). 
 
Among a random subset of 1,075 participants with immunoassay biomarker measurements, 
lower ADAMTS13 activity was significantly associated with higher levels of VEGF, MMP-3, 
and Tenascin-C, but not ANG-2 and PDGF (Table 4). The univariable association between 
MMP-3 and ADAMTS13 attenuated after adjustment for age and sex, but differed 
substantially by concurrent levels of TIMP-1, such that associations were strongest in the 
presence of high TIMP-1 (0.31 [-1.55;2.17] below the median of TIMP-1 versus -2.93 [-4.96;-
1.17] above the median; P-value for interaction=0.01). A similar interaction was seen 
between Tenascin-C and TIMP-1 (-0.68 [-2.16;0.81] below the median, versus -2.09 [-3.57;-
0.61] above the median; P-value for interaction=0.05). 
 
 
  Model I 

β (95% CI) 
Model II 
β (95% CI) 

ANG-2  0.01 (-1.25; 1.27) 0.72 (-0.62; 2.06) 
PDGF 0.64 (-0.41; 1.68) 0.14 (-0.90; 1.19) 
VEGF -1.66 (-3.07; -0.25)* -1.83 (-3.33; -0.34)* 
MMP-3 -4.03 (-5.05; -3.00)*† -1.37 (-2.64; -0.10)† 
Tenascin-C -1.74 (-2.78; -0.70)*† -1.42 (-2.46; -0.37)*† 
TIMP-1 -1.31 (-2.47; -0.14)*† 1.40 (0.11; 2.69)† 

Table 4. ADAMTS13 and selected markers of angiogenesis and extracellular matrix integrity. Values represent 
change in ADAMTS13 activity per standard deviation increase in the specific marker. Model I is a univariable 
linear regression; model II also includes age, sex, and all other biomarkers. *statistically significant at 0.05 level 
after correction for multiple testing; †=the effect estimates for the interaction of TIMP-1 with MMP-3 and 
Tenascin-C are described in the text. ANG-2=angiopoietin-2; PDGF=platelet-derived growth factor; 
VEGF=vascular endothelial growth factor; MMP-3=matrix metalloproteinase-3; TIMP-1=tissue inhibitor of 
metalloproteinases-1. 
 
 
DISCUSSION 
 
In this large population-based study, we found that higher VWF antigen levels are associated 
with prevalence and short-term, but not long-term risk of dementia. Low ADAMTS13 activity 
is associated with dementia risk during prolonged follow-up, with data suggesting an 
interactive mechanism between ADAMTS13 and diabetes in the development of dementia. 
We did not observe synergistic effects of VWF and ADAMTS13 activity, which might indeed 
indicate in part independent underlying mechanisms.  
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The cross-sectional association between VWF and dementia in our study is in line with a 
recent meta-analysis, which reported similar (standardised) differences in VWF levels 
between individuals with all-cause dementia and controls.10 However, we found associations 
to rapidly attenuate over the first few years of follow-up, explaining why two prior 
longitudinal studies did not find a significant association between VWF and risk of dementia 
after 4 and 17 years of follow-up, respectively.11,12 The crucial role of time in this association 
could indicate high variability in VWF levels, either physiologically or induced by disease 
processes or treatment. Levels of VWF in the bloodstream may increase exponentially during 
the course of disease due to increasing severity of endothelial injury, and the biological 
effect of VWF may also vary with physiological changes in advanced stages of disease, such 
as wall shear stress.23,24 This physiological variability could be investigated in future studies 
by incorporation of multiple measurements of VWF over time, which will prove important to 
determine to which extent prior associations of VWF with (subclinical) disease in fact reflect 
physiological activity of VWF, or are due to endothelial injury.  
 
VWF has been associated with markers of cerebral small-vessel disease that are known risk 
factors for dementia,25,26 including white matter hyperintensities on MRI and 
microhaemorrhages co-localised with beta-amyloid deposits.27,28 As high VWF increases the 
risk of ischaemic stroke,29 cerebral ischaemia could further link VWF to cognitive decline via 
(covert) brain infarcts or cortical micro-infarcts. Such effects might be reduced in individuals 
with blood type O,30 due to accelerated clearance and thus 25% lower levels of VWF,31,32 
although we did not find differential effects of VWF across blood type in our study. Beyond 
its direct effects, the function of VWF as a carrier protein for coagulation factor VIII (FVIII), 
thereby prolonging its half-life tenfold,33 might in part explain recently reported cognitive 
impairment with higher FVIII.30 Finally, in vitro study suggests that inflammatory cytokines 
increase release and inhibit cleavage of VWF,34 which might link inflammatory and ischaemic 
pathways in the pathogenesis of Alzheimer’s disease.14 Future studies linking measurements 
of VWF to (longitudinal) magnetic resonance neuroimaging may further unravel these 
potential mechanisms.  
 
In contrast to findings for VWF antigen, low ADAMTS13 activity was associated with 
cognitive decline and dementia risk throughout the 15-year follow-up in individuals without 
(pre-)diabetes. In line with reports of myocardial infarction and ischaemic stroke,5,8 we 
observed increased risks only in the lower range of ADAMTS13, supporting a threshold effect 
in ADAMTS13 activity.2 Nevertheless, the lower range of activity in the community is 
generally sufficient to maintain the equilibrium of VWF multimer formation and 
degradation.35,36 Along with the effect estimates for ADAMTS13 generally exceeding those of 
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the ADAMTS13:VWF ratio, this renders it unlikely that proteolytic effects of ADAMTS13 on 
VWF alone are accountable for the association of ADAMTS13 with dementia. Yet, most 
studies about ADAMTS13 have focused on its relationship with VWF or role in thrombotic 
thrombocytopenic purpura, and limited data are available to corroborate other pathways. 
Preliminary evidence suggests a role of ADAMTS13 in (downregulation of) inflammation,13,37 
regulation of angiogenesis,13 and degradation of extracellular matrix,13 which have also been 
described in dementia.14-16 In mice, deficiency of ADAMTS13 enhances inflammation and 
plaque formation,38,39 aggravates consequences of cerebral ischaemia,40-42 and appears to 
regulate blood-brain barrier permeability,43 possibly by controlling vascular remodeling via 
VEGF, ANG-2, and galectin-3 related pathways.42,43 While these processes in mice often 
appear dependent on VWF or are observed in ADAMTS-/- mice, the levels required may be 
limited, and thus generally abundant in the general population. In exploratory analyses, we 
found associations of ADAMTS13 activity with levels of VEGF, MMP-3, Tenascin-C, and TIMP-
1, which might indeed indicate involvement in vascular remodelling, and in any case 
encourage further study of ADAMTS13 in relation to vascular (brain) disease and 
neurodegeneration. 
 
Our findings suggest that diabetes pathophysiology, rather than antidiabetic medication, 
modifies the association between ADAMTS13 and dementia risk. These analyses were 
prompted by our recent study in which we found increased risks of diabetes with higher 
ADAMTS13 activity.17 Although the mechanisms underlying these observations are 
unknown, it is conceivable that ADAMTS13 has other, yet unidentified proteolytic activity, or 
competes/ interacts with glucose or currently unknown protein(s) to contribute to cognitive 
decline. One would expect that the pathological mechanism underlying this interaction 
shows similarly in the association of ADAMTS13 with related disease outcomes. A previous 
report of the Rotterdam Study has described an increased risk of ischaemic stroke with low 
ADAMTS13 activity,5 but the link between ADAMTS13 and diabetes had not yet emerged at 
the time. Exploring these data further in a post-hoc analysis, we now observed patterns in 
the association between ADAMTS13 and risk of ischaemic stroke, similar to those with 
dementia in the current study (HR [95% CI] per SD decrease in ADAMTS13 for risk of 
ischaemic stroke in those free of (pre-)diabetes: 1.19 [1.04-1.36], versus in those with (pre-
)diabetes: 0.94 [0.79-1.11]). This points towards a vascular disease related interactive 
mechanism, in which ADAMTS13 has a common role across diseases outcomes. While we 
encourage attempts for replication of our findings in other populations, we believe that 
current insight warrants serum glucose and diabetes history to be taken into account in 
future study of ADAMTS13.  
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Although we believe our results are reliable, there are several limitations. First, despite 
rigorous adjustment for known determinants of VWF and ADAMTS13, residual confounding 
may still exist, in particular with respect to other factors involved in hemostasis, diabetes, or 
possibly angiogenesis and extracellular matrix stability. Second, although follow-up for 
dementia was near-complete, attrition for repeated detailed cognitive assessment was 
substantial. Third, the association between ADAMTS13 and diabetes was first described in 
the same cohort as drawn from in the present analyses, and (large-scale) replication is 
warranted. Fourth, the Rotterdam Study population is predominantly of Caucasian descent, 
and levels and effects of ADAMTS13 might differ across ethnicities. 
 
In conclusion, higher VWF and low ADAMTS13 activity are associated with accelerated 
cognitive decline and increased risk of dementia. However, associations with VWF are 
restricted to short-term risks, and do not display synergistic effects with ADAMTS13 on 
dementia risk. The impact of diabetes on the effect of ADAMTS13 on dementia (as well as 
ischaemic stroke), further emphasises the need to unravel the biological function of 
ADAMTS13.  
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ABSTRACT 
 
Various clinical trials now aim to include individuals at high risk of dementia using genetic 
data, which increases the need for accurate risk prediction to inform study design and 
enrolment. However, available risk estimates are sparse, and the impact of the source 
population on absolute short-term estimates largely unexplored. To determine the risk of 
mild cognitive impairment (MCI) or dementia by APOE-ε4 dose, and identify potential risk 
modifiers, we included cognitively healthy individuals aged 60-75 years from four different 
cohorts, namely the National Alzheimer’s Coordinating Center (NACC, N=5073), the 
Rotterdam Study (N=6399), the Framingham Heart Study (N=4078), and the Sacramento 
Area Latino Study on Aging (SALSA, N=1294). We computed stratified cumulative incidence 
curves for MCI and/or dementia by age (60-64, 65-69, 70-75 years) and APOE-ε4 dose, 
accounting for the competing risk of mortality, and assessed sex, education, family history, 
vascular risk, and baseline cognitive function as potential risk modifiers. Overall, cumulative 
incidence was uniformly higher in NACC than in the population-based cohorts. Among APOE-
ε44 individuals, five-year cumulative incidence of MCI/dementia in the 60-64 age stratum 
was 0-6% in the three population-based cohorts versus 23% in NACC; in the 65-69 age 
stratum 9-10% versus 35%; and in the 70-75 age stratum 19-33% versus 38%. Five-year 
incidence of dementia was negligible except for APOE-ε44 individuals and those over 70. 
Differences of similar magnitude were seen between NACC and the population-based 
cohorts for heterozygous ε4 carriers. Lifetime incidence (to age 80-85) of dementia in the 
long-term Framingham and Rotterdam cohorts was 35% for the homozygous and 15% for 
heterozygous APOE-ε4 carriers, equal across baseline age groups. Confidence limits were 
often wide, particularly for APOE-ε44 individuals and for the dementia outcome at five 
years. In regression models, lower educational attainment, subjective memory concerns, 
worse cognitive performance at baseline, and family history of dementia consistently 
increased dementia risk. In conclusion, absolute risk estimates of MCI or dementia, 
particularly over short time intervals, are sensitive to sampling and a variety of 
methodological factors. Absolute risks are fairly consistent across population-based cohorts, 
but much higher in a convenience cohort, which has implications for informed consent and 
design for clinical trials targeting high-risk individuals.  
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INTRODUCTION   
 
At present, 48 million people worldwide have dementia, and this number is projected to 
increase to 131 million by 2050.1 Consequently, prevention of Alzheimer’s disease, the most 
common type of dementia, has become a major research focus, with several prevention 
trials now underway.2-4 The feasibility of such trials largely depends on the ability to recruit 
individuals at risk of developing disease during the trial period. One strategy to achieve this 
is to focus on individuals at high genetic risk. The Alzheimer Prevention Initiative5 is 
embarking on two clinical trials targeting cognitively unimpaired individuals at highest 
genetic risk for Alzheimer’s disease: one trial in an extended early-onset Colombian kindred 
carrying a fully penetrant presenilin 1 mutation (NCT01998841), and the Generation Study 
(NCT02565511), a trial in individuals ages 60-75 who carry two copies of the high-risk 
apolipoprotein E ε4 allele (APOE-ε4). The Generation Study is a double blind, randomized, 
placebo-controlled clinical trial of two different anti-amyloid agents in approximately 1,300 
participants.  Recruitment is through several sources, notably in the United States through 
the GeneMatch Alzheimer prevention registry.6 High volume recruitment efforts are 
required because the APOE-ε44 genotype occurs in approximately 1-2% of the general 
population, so thousands of individuals must be screened to identify eligible participants. An 
assessment of absolute risk among eligible individuals in a meaningful time frame is essential 
for the informed consent process, as well as trial design, but in spite of numerous studies 
documenting relative risk increases for APOE-ε4 carriers (from 2- to 4-fold increases for 
heterozygous, to 8- to 15-fold for homozygous ε4 carriers),7-11 the absolute risks are less 
clear.  
 
When this study was initiated, available estimates of absolute risk of dementia for APOE-ε4 
carriers were largely based on models developed from relative risks observed in one 
population and incidence data from another, often from case control samples. The Risk 
Evaluation and Education for Alzheimer's Disease Study (REVEAL) developed risk estimates 
based on observed absolute risks in first degree relatives versus spouses in a family 
sample,12,13 and then applied relative risks by age, sex, and genotype from a large meta-
analysis.11 A more recent effort,14 also reported on the 23andMe website,15 applied relative 
risks from a recent European GWAS sample16 to incidence estimates from the Rochester17 
and Personnes Agées Quid (PAQUID)18 cohorts to compute lifetime risks by APOE genotype.  
Since that time, estimates from a single convenience cohort have been published, also with 
also high incidence rates.19  
 
Because the available estimates of APOE-associated incidence of MCI or dementia were 
primarily based on models of disease onset rather than prospective observations, and 
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because APOE also affects longevity and risk for diseases other than dementia, we 
developed new estimates in population-based cohorts to better inform both trial designers 
and potential participants.  For potential Generation Trial participants, the outreach and 
recruitment protocol for those who do not know their APOE genotype includes IRB-approved 
processes for obtaining their genotype and inviting them to a trial site. To ensure an 
appropriate disclosure setting during trial enrolment, prospective participants with and 
without the APOE-ε44 genotype are invited to assess trial eligibility and appropriateness for 
genetic disclosure visits. Our aims were to use prospective data to determine five-year and 
lifetime risk of MCI or dementia by age and APOE-ε4 dose among those as similar as possible 
to eligible trial participants (age 60-75, normal cognition) and to identify sources of 
heterogeneity that may account for variation in risk across populations.  
 
 
METHODS 
 
Study population 
We sought available data from longitudinal population-based cohorts based on the following 
attributes: recruitment and a baseline cognitive evaluation at or before age 60, ongoing 
surveillance for assessment for MCI and dementia, and available APOE genotypes. Many 
ageing-focused cohorts (e.g., the Religious Orders Study,20 the Cache County Study21) did not 
meet these criteria because of initial ascertainment at older ages. We also sought as broad 
ethnic representation as possible: we were able to include one Hispanic population with 
limited sample size, but no African American cohort was available with the requisite data. 
Three population-based cohorts were analysed: the Framingham Heart Study,22 the 
Rotterdam Study,23 and the Sacramento Area Latino Study on Aging (SALSA).24,25 For 
comparison, we also included a longitudinal convenience cohort from the National 
Alzheimer’s Disease Coordinating Center (NACC),26 from the United States’ multisite National 
Institute on Aging-funded Alzheimer’s Disease Center Program), because we believed that 
NACC participants might resemble those volunteering for the trial in terms of key 
demographic variables and level of research interest.  
 
Within each cohort, we selected participants with known APOE genotype who were 
cognitively unimpaired at the time of their first visit within the 60-75 years age window, and 
included all available subsequent visit information until diagnosis of MCI or dementia. For 
the two longer-term studies, the Framingham Heart Study and Rotterdam Study, individuals 
could contribute to multiple age strata for the stratified analyses, but were only included 
once in our regression analyses (see Statistical Analysis below). APOE genotype was 
measured in 94.1% (Rotterdam Study), 68.5% (Framingham Heart Study), 76.1% (NACC), and 
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92.0%% (SALSA) of otherwise eligible study participants, and only these individuals were 
included in the current study. On average, individuals who did not have their APOE genotype 
determined were slightly older in all cohorts but the Framingham Heart Study, in which they 
were younger. Those without APOE status were also more likely female in NACC and the 
Rotterdam Study, but more likely male in SALSA and the Framingham Heart Study. However, 
differences were generally small. 
 
Ascertainment and assessment methods for each cohort 
The original Framingham Heart Study cohort was recruited in 1948-1953 based on residence 
in Framingham, Massachusetts for a longitudinal study of cardiovascular disease (mean age 
at enrolment 45 years).  A cohort of offspring of the original participants and their spouses 
was established in 1971-1975 (mean age at enrolment 37). Details of study procedures have 
been published elsewhere.22  Cognitive status has been monitored in the original cohort 
since 1975, when a comprehensive neuropsychological battery was administered, followed 
by neurological assessment of participants with lower cognitive scores.27 Since 1981, this 
cohort has been assessed at each examination with a Mini-Mental State Examination 
(MMSE), where participants were flagged for further cognitive screening if they scored 
below predefined education- and prior performance-based cut-offs. The offspring Cohort 
has undergone similar monitoring with serial MMSEs since 1991. Participants identified as 
having possible cognitive impairment based on these screening assessments (or in reports of 
cognitive concerns by the participant, family, treating physician, Framingham ancillary study 
investigators, or through review of outside medical records) are invited to undergo 
additional annual neurological and neuropsychological examinations. A dementia review 
panel including a neurologist and a neuropsychologist reviews each case of possible 
cognitive decline and dementia and categorizes participants based on the best available 
information (from serial neurological and neuropsychological assessments, telephone 
interviews with caregivers, medical records, neuroimaging, and, when available, autopsy 
data) and assigns a diagnosis and onset date for dementia according to DSM-IV criteria and 
MCI based on criteria by Petersen et al.28 Diagnoses made prior to 2001 have been re-
reviewed to update diagnostic criteria. Participants who entered the sample for the present 
analyses at a visit prior to MMSE administration but were cognitively unimpaired at 
subsequent study visits had this designation extended back to their earlier visits. For our 
regression analyses, these individuals were included at their first MMSE administration 
within our age window. 
 
For the Rotterdam Study, individuals over 55 years in 1990 residing in a specific district of 
the City of Rotterdam, the Netherlands were invited to participate, with additional waves 
invited in 2000 (age >55 years) and 2005 (age >45 years). Details of study procedures have 
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reviewed to update diagnostic criteria. Participants who entered the sample for the present 
analyses at a visit prior to MMSE administration but were cognitively unimpaired at 
subsequent study visits had this designation extended back to their earlier visits. For our 
regression analyses, these individuals were included at their first MMSE administration 
within our age window. 
 
For the Rotterdam Study, individuals over 55 years in 1990 residing in a specific district of 
the City of Rotterdam, the Netherlands were invited to participate, with additional waves 
invited in 2000 (age >55 years) and 2005 (age >45 years). Details of study procedures have 
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previously been published.23 In brief, all participants were interviewed at home and 
examined at the study centre every 4 to 5 years. Participants were routinely screened for 
dementia at baseline and follow-up examinations using the MMSE and the Geriatric Mental 
State Schedule (GMS).29 Those with MMSE<26 or GMS>0 subsequently underwent an 
examination and informant interview using the Cambridge Examination for Mental Disorders 
of the Elderly.30 Additionally, the total cohort was continuously monitored for dementia 
through computerized linkage between the study database and digitized medical records. 
The current sample included all participants with MMSE >26 at time of their first visit within 
the age window of interest. Formal assessment of MCI did not begin until 2005 in the 
Rotterdam Study.  For the present analyses we therefore developed a pragmatic diagnosis of 
MCI, requiring a MMSE score <26 or a drop of at least 3 points from baseline, plus indicating 
memory concerns in a standardised questionnaire.  
 
For SALSA, participants over 60 were sampled from six counties including census tracts with 
at least 5% Hispanic population in the Sacramento Valley of California in 1998-1999 and 
were followed approximately every 12-15 months until 2008. Detailed methods are 
described elsewhere.24,31 In brief, dementia assessment included screening with both the 
Modified Mini-Mental State Examination (3MSE) and a word list learning task from a 
standard battery.25,32 Those scoring below the 20th percentile (using age, education, sex, and 
language adjusted norms) on either test (or for follow-up visits, dropping 3 points in word 
list learning) were further evaluated using the Informant Questionnaire on Cognitive Decline 
in the Elderly (IQCODE),33,34 and if this gave additional support for decline, were evaluated by 
a neurologist and categorized as cognitively unimpaired, memory-impaired (based on testing 
alone, without IQCODE corroboration), Cognitively Impaired Not Demented (CIND),35 or 
dementia.  Given the requirement for both a cognitive testing abnormality and confirmation 
from an informant, CIND was treated as equivalent to MCI.31 

 
Participants in the NACC cohort were volunteers ascertained from various sources at 34 
Alzheimer’s Disease Centers in the United States. We used the March 2016 data freeze for 
the present analyses, so these data reflect study visits between September 2005 and March 
2016. The participants were evaluated according to a standardized protocol,36 with each 
subject and a collateral informant interviewed by the study clinician to rate the Clinical 
Dementia Rating (CDR),37 plus a battery of neuropsychological tests.38 A diagnosis was made 
at each visit by the study clinician following procedures at each site, and there were no 
study-wide standardized cut-offs on the CDR, MMSE, or other neuropsychological tests.  
Follow-up visits were conducted approximately annually.  
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Definition of predictor variables 
Education was reported in years for SALSA and NACC and in categories of less than high 
school, high school, some college, or college graduation for Rotterdam and FHS. SALSA and 
NACC were translated into these categories as follows: <12 years: less than high school, 12 
years: high school, 13-15 years: some college, and >16 years: college graduation. To assess 
general cognition across cohorts, we used MMSE for the Rotterdam Study, the Framingham 
Heart Study, and NACC, and 3MS for SALSA. To enable comparisons on relative performance 
within each cohort, we standardized based on the score at the baseline visit within each 
cohort, centring the raw scores around their sample mean and then dividing the centred 
scores by their standard deviation. Memory concerns at NACC were based on a single 
clinician-rated variable asking whether the subject believes that he or she has a problem 
with memory. Memory concerns in the Rotterdam Study were based on three questionnaire 
items asking 1) whether the participant is worried about his or her memory; 2) whether the 
participant ever loses track of what he or she is doing in the midst of an activity; and 3) 
whether the participant experiences word-finding difficulties. A positive answer to any of 
these questions qualified as memory concerns. Family history was defined as having at least 
one parent with dementia for the Rotterdam Study, and at least one first degree relative 
with dementia for NACC.  
 
Analysis   
We performed all analyses first for MCI or dementia (“MCI/dementia”), then for dementia 
alone. For the purposes of this trial, the MCI/dementia outcome was critically relevant, in 
that incident dementia was unlikely during the trial period, while there was tangible risk for 
MCI. Analyses for dementia only were performed as well because dementia is a more robust 
outcome than MCI. 
 
We estimated five-year and “lifetime” (i.e., to age 80-85) cumulative incidence by APOE-ε4 
dose and 5-year age baseline strata (age 60-64, 65-69, 70-75 years). We chose three age 
strata as a trade-off between addressing the steeply changing risk with age and the limited 
numbers of APOE-ε44 homozygotes, which left the ε-44 strata too small for stable estimates 
in the SALSA cohort. For the stratified analyses of the two longer-term studies, the 
Framingham Heart Study and the Rotterdam Study, individuals could contribute to multiple 
baseline age strata; we used the first visit within that age window as a baseline in these 
analyses. “Lifetime” estimates were computed as 20-year cumulative incidence for the age 
60-64 stratum, as 15-year for the 65-69 stratum, and as 10-year for the 70-75 stratum; these 
estimates were only computed for the two longer-term studies to minimize extrapolation.  
 
Stratified cumulative incidence curves by age stratum and APOE-ε4 dose were estimated, 
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adjusting for the competing risk of mortality.42 In the presence of competing risks, the naïve 
Kaplan-Meier estimator, which treats the failure from the competing causes as censored 
observations, overestimates the cumulative incidence of the event of interest.43 We used 
the ‘cmprsk’ package in R software to estimate the cumulative incidence for each age by 
APOE-ε44 dose stratum.44 Following the suggestion of Lin,45 we used the transformation 
log[-log(1-x)] to construct the confidence interval for cumulative incidence. The 
transformation not only ensures that the boundaries of cumulative incidence are contained 
in [0,1], but also improves the coverage accuracy.45 

 
We used the same competing risks analytic framework to assess the effects of age and 
APOE-ε4 dose plus additional covariates on the cumulative incidence of MCI/dementia in 
order to inform personalized risk assessment and to understand differences across the 
cohorts. We used subdistribution hazard regression models,46 because they directly link the 
regression coefficients with the cumulative incidence function (in contrast to cause-specific 
hazards regression, where the direct link cannot be made).47,48 These analyses were also 
performed using the ‘cmprsk’ package in R software.44  
 
For each cohort and for each outcome, we first fit univariable models for baseline age, sex, 
APOE-ε4 dose, education, standardized cognitive screen, subjective memory concerns, and 
family history of dementia. Then, we ran simple multivariable models for each outcome, 
including only APOE-ε4 dose and demographic factors (age, sex, and education). Last, we ran 
larger multivariable models also including standardized cognitive screen plus subjective 
memory concerns and family history of dementia if available for the cohort. Missing data on 
covariates were imputed using the mean of a 5-fold multiple imputation for analysis 
(Rotterdam Study: 11.5% for family history, 1% for educational attainment). 
 
For the Rotterdam Study, the exact date of dementia diagnosis was used if available, and 
alternatively the midpoint of the interval between visits was used as the onset time of MCI 
or dementia at a study visit (conducted at four-year intervals) for both cumulative incidence 
estimates and subdistribution hazard regression. In addition, as a sensitivity analysis, we 
repeated our survival curves and regression models treating the onset of MCI or dementia as 
interval censored in addition to adjusting for the competing risk using the ‘MIICD’ package in 
R software to estimate the cumulative incidence, and results were extremely similar except 
for somewhat larger confidence intervals.  
 
Unlike the stratified analyses, for the regression analyses, each subject was used only once. 
Typically, the first visit was the first visit within the eligible age window of 60-75. For the 
Framingham Heart Study, MMSE was not available at baseline visits prior to 1981 (as 
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described above). Thus, for the regression analyses, we reset the baseline visit as the first 
visit at which MMSE was available. This had the additional benefit of increasing the range of 
baseline ages within the cohort (see Table 1). 
 
Meta-analyses were conducted for the five-year cumulative incidence estimates for all four 
cohorts and then for only the three population-based cohorts. Meta-analyses could not be 
conducted for the “lifetime” estimates because they only included two cohorts. As there was 
considerable heterogeneity among the studies, a random-effects meta-analysis based on 
DerSimonian-Laird method was used.49 This analysis was performed using the ‘metafor’ 
package in R software. Because the primary goal was estimating cumulative incidence and 
understanding differences across cohorts and individuals rather than hypothesis testing, 
these analyses are reported with confidence intervals rather than statistical significance, and 
no adjustments are made for multiple comparisons.  
 
 
 

Characteristics NACC 
(n=5073) 

RS 
(n=6399) 

FHS 
(n=4078) 

SALSA 
(n=1294) 

Age at baseline, years 68.7 (4.3) 65.4 (4.2) 62.0 (1.7) 67.8 (4.4) 
Men 1707 (33.6%) 2893 (45.2%) 1762 (43.2%) 538 (41.6%) 
Education, years 15.8 (3.0) 12.9# 13.2# 7.7 (5.4) 
   No high school 140 (2.8%) 728 (11.4%) 622 (15.3%) 835 (64.5%) 
   High school 720 (14.2%) 2773 (43.3%) 1330 (32.6%) 201 (15.5%) 
   Some college 815 (16.1%) 1965 (30.7%) 1004 (24.6%) 126 (9.7%) 
   College graduation 3379 (66.6%) 871 (13.6%) 994 (24.4%) 125 (9.7%) 
APOE genotype     
   ε2/ε2, ε2/ε3, ε3/ε3 

3431 (67.6%) 4598 (71.9%) 3166 (77.6%) 
1112 

(85.9%) 
   ε2/ε4, ε3/ε4 1484 (29.3%) 1645 (25.7%) 845 (20.7%) 171 (13.2%) 
   ε4/ε4 158 (3.1%) 156 (2.4%) 67 (1.6%) 11 (0.9%) 
Family history of dementia 2957 (58.3%) 1191 (18.6%) n/a n/a 
Cognitive screen score (MMSE or 3MS)‡ 29.0 (1.3) 28.5 (1.0) 28.8 (1.4) 86.5 (11.3) 
Subjective memory concerns  1262 (24.9%) 2759 (43.1%) n/a n/a 
MCI or dementia during follow-up 602 (11.9%) 1301 (20.3%) 826 (20.3%) 111 (8.6%) 
Dementia during follow-up 55 (1.1%) 782 (12.2%) 658 (16.1%) 49 (3.8%) 
Remaining at 5-years of follow up  1865 (36.7%) 5592 (87.4%) 3911 (95.9%) 976 (75.5%) 
Length of follow-up, years 3.96 (2.97) 12.64 (6.14) 17.59 (9.09) 6.50 (2.53) 

Table 1. Population characteristics of subjects from the National Alzheimer Coordinating Center (NACC), the 
Rotterdam Study (RS), the Framingham Heart Study (FHS), and the Sacramento Area Latino Study on Aging 
(SALSA). Values are depicted as mean ±SD for continuous variables, and absolute numbers (%) for categorical 
variables. #In the Framingham Heart Study and the Rotterdam Study, educational attainment was recorded as 
categories. To facilitate comparisons with other samples, the mean was estimated by counting less than high 
school as 10 years, high school as 12, some college as 14, and college graduate as 16. Conversely, these values 
were used to assign categories to education for the NACC and SALSA cohorts. ‡ The Mini–Mental State 
Examination (MMSE) ranges from 0-30, whereas scores on the Modified Mini-Mental State Examination (3MS) 
range from 0-100.  N/A=not available. 
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RESULTS 
 
Table 1 presents the composition of the four cohorts.  The cohorts differed considerably in 
size and duration of follow-up, with SALSA much smaller than the other cohorts, and long-
term follow-up only available in the Framingham Heart Study and Rotterdam Study. Other 
differences were seen in educational attainment, with mean years ranging from less than 8 
in SALSA to nearly 16 in NACC, and sex, with 34% men in NACC compared to 42-45% in the 
population-based cohorts. The cohorts also differed markedly in APOE-ε4 allele frequency, 
ranging from 7.5% in SALSA to 17.8% in NACC. NACC also had a 58.3% fraction with a family 
history of dementia, compared to 18.6% in Rotterdam, the only other site that assessed it.  
 
Figure 1 shows the cumulative incidence of MCI/dementia stratified by baseline age group 
and APOE-ε4 dose. All four figures show 8.5 years of follow up on the same scale to facilitate 
comparison. Table 2 shows the corresponding five-year cumulative incidence of 
MCI/dementia for all cohorts, and for dementia alone. Figure 2 (MCI/dementia) and Table 3 
(also for dementia alone) display the lifetime cumulative incidence (to age 80-85) across the 
two longer-term cohorts. Overall, within each cohort, risk increased with age and APOE-ε4 
dose. However, absolute risks differed substantially across cohorts, particularly between 
NACC and the population-based cohorts. NACC typically had higher risk for any genotype at 
any age. Estimates among the population-based cohorts were very similar, particularly for 
longer-term follow-up and the dementia outcome.  
 
Five-year cumulative incidence of MCI/dementia was low in the youngest age stratum, 
particularly in the cohort studies, although somewhat higher for APOE-ε4-positive 
individuals, especially homozygotes (23% in NACC versus 5-6% in Framingham and 
Rotterdam). Five-year incidence of MCI/dementia was higher in the highest age stratum, 
particularly among homozygotes (38% in NACC versus 18-23% in Framingham and 
Rotterdam). Five-year incidence of dementia alone was negligible at younger ages, even in 
APOE-ε44 homozygotes, but rose among older individuals, particularly homozygotes (12% in 
NACC versus 7-12% in Framingham and the Rotterdam).  The meta-analyses of the five-year 
cumulative incidence estimates for the MCI/dementia outcome showed consistent increases 
in incidence by gene dose within age strata and by age stratum within gene dose, higher 
when the NACC estimates are included, ranging from a low of 1% for age 60-64 with no 
copies of APOE-ε4 in the population-based cohorts to a high of 27% for age 70-75 
homozygotes with all four cohorts (Table 2). Estimated only for the Rotterdam Study and the 
Framingham Heart Study, lifetime incidence was consistent in the two cohorts and across 
age strata. For example, lifetime incidence of MCI/dementia  rises with APOE-ε4 dose from 
12-15% for those with no copies of APOE-ε4 to 37-47% for homozygotes (Table 3). 
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Figure 1. Cumulative incidence of MCI/dementia per cohort, stratified by age and APOE genotype. 
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in incidence by gene dose within age strata and by age stratum within gene dose, higher 
when the NACC estimates are included, ranging from a low of 1% for age 60-64 with no 
copies of APOE-ε4 in the population-based cohorts to a high of 27% for age 70-75 
homozygotes with all four cohorts (Table 2). Estimated only for the Rotterdam Study and the 
Framingham Heart Study, lifetime incidence was consistent in the two cohorts and across 
age strata. For example, lifetime incidence of MCI/dementia  rises with APOE-ε4 dose from 
12-15% for those with no copies of APOE-ε4 to 37-47% for homozygotes (Table 3). 
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Figure 1. Cumulative incidence of MCI/dementia per cohort, stratified by age and APOE genotype. 
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Figure 2. Lifetime risk of MCI/dementia in the two long-term cohorts. 
 
Results of univariable and multivariable subdistribution hazard regression are presented in 
Table 4. Overall, the regression results were fairly consistent across the four cohorts, even in 
the small SALSA sample, and considerably more consistent than the cumulative incidence 
results.  
 
The univariable results showed substantially higher risk with increasing age, increasing 
APOE-ε4 dose, and lower education. Family history also had a nominally significant effect in 
both cohorts in which it was measured. Men were at lower risk in the population-based 
cohorts, but carried higher risk in NACC. Risk estimates for sex were attenuated after 
adjustment for education. Subjective memory concerns carried risk in both cohorts that 
assessed them. Higher standardized baseline MMSE or 3MS score was consistently 
protective across all cohorts, except for Rotterdam. It is noteworthy that standardized 
cognitive screen performance and subjective memory concerns generally showed substantial 
hazard ratios, even controlling for education, and that family history, even when controlling 
for APOE-ε4 dose, also had an impact. Overall, we observed similar risk estimates for 
MCI/dementia and for dementia alone, although some estimates were slightly higher for the 
dementia outcome (data not shown). 

 
 

 
 

A P O E  F O R  T R I A L  D E S I G N  

259 

N
AC

C*
 

Ro
tt

er
da

m
 S

tu
dy

 
Fr

am
in

gh
am

 
SA

LS
A 

Ha
za

rd
 ra

tio
 (9

5%
 C

I) 
Ha

za
rd

 ra
tio

 (9
5%

 C
I) 

Ha
za

rd
 ra

tio
 (9

5%
 C

I) 
Ha

za
rd

 ra
tio

 (9
5%

 C
I) 

Ag
e 

at
 b

as
el

in
e 

1.
08

 (1
.0

6-
1.

10
) 

1.
09

 (1
.0

8-
1.

10
) 

1.
16

 (1
.1

4-
1.

18
) 

1.
07

 (1
.0

6-
1.

09
) 

M
al

e 
se

x 
1.

36
 (1

.1
6-

1.
60

) 
0.

83
 (0

.7
4-

0.
93

) 
0.

89
 (0

.7
6-

1.
04

) 
0.

85
 (0

.6
4-

1.
13

) 
AP

O
E 

ge
no

ty
pe

 
  N

on
-c

ar
rie

r ε
4 

RE
FE

RE
NC

E 
RE

FE
RE

NC
E 

RE
FE

RE
NC

E 
RE

FE
RE

NC
E 

  H
et

er
oz

yg
ot

e 
ε4

 
1.

51
 (1

.2
7-

1.
78

) 
1.

64
 (1

.4
6-

1.
84

) 
1.

57
 (1

.3
2-

1.
88

) 
2.

03
 (1

.4
5-

2.
82

) 
  H

om
oz

yg
ot

e 
ε4

 
2.

79
 (1

.9
8-

3.
92

) 
2.

63
 (2

.0
2-

3.
42

) 
3.

30
 (2

.0
8-

5.
22

) 
2.

22
 (0

.7
5-

6.
57

) 
Ed

uc
at

io
n 

  N
o 

hi
gh

 sc
ho

ol
 

1.
86

 (1
.2

4-
2.

80
) 

1.
41

 (1
.2

1-
1.

64
) 

1.
80

 (1
.4

6-
2.

22
) 

1.
53

 (0
.9

9-
2.

36
) 

  H
ig

h 
sc

ho
ol

 
RE

FE
RE

NC
E 

RE
FE

RE
NC

E 
RE

FE
RE

NC
E 

RE
FE

RE
NC

E 
  S

om
e 

co
lle

ge
 

0.
83

 (0
.6

2-
1.

11
) 

0.
81

 (0
.7

1-
0.

93
) 

1.
05

 (0
.8

5-
1.

29
) 

0.
70

 (0
.3

2-
1.

50
) 

  C
ol

le
ge

 g
ra

du
at

io
n 

0.
85

 (0
.6

7-
1.

06
) 

0.
56

 (0
.4

6-
0.

69
) 

0.
76

 (0
.6

0-
0.

96
) 

1.
01

 (0
.5

1-
1.

97
) 

Co
gn

iti
ve

 sc
re

en
 (p

er
 st

an
da

rd
 d

ev
ia

tio
n)

‡  
0.

62
 (0

.5
7-

0.
66

) 
1.

00
 (0

.9
5-

1.
06

) 
0.

80
 (0

.7
6-

0.
85

) 
0.

63
 (0

.5
8-

0.
68

) 
Su

bj
ec

tiv
e 

m
em

or
y 

co
nc

er
ns

 
2.

62
 (2

.2
2-

3.
08

) 
1.

71
 (1

.5
3-

1.
91

) 
N

/A
 

N
/A

 
Fa

m
ily

 h
is

to
ry

 o
f d

em
en

tia
 

1.
16

 (0
.9

8-
1.

37
) 

1.
27

 (1
.1

1-
1.

44
) 

N
/A

 
N

/A
 

 

Ha
za

rd
 ra

tio
 (9

5%
 C

I) 
Ha

za
rd

 ra
tio

 (9
5%

 C
I) 

Ha
za

rd
 ra

tio
 (9

5%
 C

I) 
Ha

za
rd

 ra
tio

 (9
5%

 C
I) 

Ag
e 

at
 b

as
el

in
e 

1.
08

 (1
.0

5,
 1

.1
0)

 
1.

08
 (1

.0
7,

 1
.0

9)
 

1.
15

 (1
.1

2,
 1

.1
7)

 
1.

07
 (1

.0
3,

 1
.1

2)
 

M
al

e 
se

x 
1.

14
 (0

.9
6,

1.
36

) 
0.

92
 (0

.8
1,

 1
.0

3)
 

0.
93

 (0
.7

9,
 1

.1
0)

 
0.

84
 (0

.5
6,

1.
25

) 
AP

O
E 

ge
no

ty
pe

 
  N

on
-c

ar
rie

r ε
4 

RE
FE

RE
NC

E 
RE

FE
RE

NC
E 

RE
FE

RE
NC

E 
RE

FE
RE

NC
E 

  H
et

er
oz

yg
ot

e 
ε4

 
1.

49
 (1

.2
5,

 1
.7

9)
 

1.
63

 (1
.4

4,
 1

.8
4)

 
1.

75
 (1

.4
5,

 2
.1

0)
 

2.
15

 (1
.3

9,
 3

.3
3)

 
  H

om
oz

yg
ot

e 
ε4

 
2.

37
 (1

.5
9,

 3
.5

3)
 

2.
78

 (2
.1

0,
 3

.6
9)

 
4.

01
 (2

.3
1,

 6
.9

6)
 

1.
65

 (0
.2

7,
 9

.9
3)

 
Ed

uc
at

io
n 

  N
o 

hi
gh

 sc
ho

ol
 

1.
41

 (0
.9

1,
 2

.1
9)

 
1.

24
 (1

.0
6,

 1
.4

6)
 

1.
33

 (1
.0

6,
 1

.6
5)

 
0.

80
 (0

.4
3,

 1
.4

9)
 

  H
ig

h 
sc

ho
ol

 
RE

FE
RE

NC
E 

RE
FE

RE
NC

E 
RE

FE
RE

NC
E 

RE
FE

RE
NC

E 
  S

om
e 

co
lle

ge
 

0.
90

 (0
.6

6,
 1

.2
2)

 
0.

83
 (0

.7
2,

 0
.9

5)
 

1.
10

 (0
.8

9,
 1

.3
6)

 
1.

01
 (0

.4
2,

 2
.4

3)
 

  C
ol

le
ge

 g
ra

du
at

io
n 

0.
92

 (0
.7

3,
 1

.1
6)

 
0.

62
 (0

.5
0,

 0
.7

7)
 

0.
87

 (0
.6

9,
 1

.1
1)

 
1.

61
 (0

.7
2,

 3
.6

2)
 

Co
gn

iti
ve

 sc
re

en
 (p

er
 st

an
da

rd
 d

ev
ia

tio
n)

‡  
0.

63
 (0

.5
8,

 0
.6

9)
 

1.
08

 (1
.0

2,
 1

.1
5)

 
0.

87
 (0

.8
2,

 0
.9

3)
 

0.
59

 (0
.5

2,
 0

.6
7)

 
Su

bj
ec

tiv
e 

m
em

or
y 

co
nc

er
ns

 
2.

23
 (1

.8
7,

 2
.6

6)
 

1.
56

 (1
.3

9,
 1

.7
4)

 
N

/A
 

N
/A

 
Fa

m
ily

 h
is

to
ry

 o
f d

em
en

tia
 

1.
27

 (1
.0

6,
 1

.5
2)

 
1.

16
 (1

.0
1,

 1
.3

2)
 

N
/A

 
N

/A
 

Ta
bl

e 
4.

  R
eg

re
ss

io
n 

fo
r 

M
CI

/d
em

en
tia

. R
es

ul
ts

 f
ro

m
 u

ni
va

ria
bl

e 
(t

op
 t

ab
le

) 
an

d 
m

ul
tiv

ar
ia

bl
e 

an
al

ys
is 

(b
ot

to
m

 t
ab

le
) 

ar
e 

pr
es

en
te

d 
pe

r 
co

ho
rt

. 
‡M

in
i–

M
en

ta
l 

St
at

e 
Ex

am
in

at
io

n 
(M

M
SE

) f
or

 N
AC

C,
 th

e 
Ro

tt
er

da
m

 S
tu

dy
, a

nd
 th

e 
Fr

am
in

gh
am

 H
ea

rt
 S

tu
dy

; a
nd

 a
 M

od
ifi

ed
 M

in
i-M

en
ta

l S
ta

te
 E

xa
m

in
at

io
n 

(3
M

SE
) i

n 
SA

LS
A.

 



C H A P T E R  5 . 2  
 

258
 

 

 
Figure 2. Lifetime risk of MCI/dementia in the two long-term cohorts. 
 
Results of univariable and multivariable subdistribution hazard regression are presented in 
Table 4. Overall, the regression results were fairly consistent across the four cohorts, even in 
the small SALSA sample, and considerably more consistent than the cumulative incidence 
results.  
 
The univariable results showed substantially higher risk with increasing age, increasing 
APOE-ε4 dose, and lower education. Family history also had a nominally significant effect in 
both cohorts in which it was measured. Men were at lower risk in the population-based 
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cognitive screen performance and subjective memory concerns generally showed substantial 
hazard ratios, even controlling for education, and that family history, even when controlling 
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DISCUSSION  
 
Of 16,844 participants included from all four cohorts, 392 (2.3%) were APOE-ε44 
homozygotes, highlighting the low prevalence of this genotype. Nonetheless, the expected 
APOE-ε4 dose-related increases in cumulative incidence and relative hazard in the regression 
models are readily apparent. Striking differences in estimated cumulative incidence, 
however, between the population-based cohort studies and the highly ascertained NACC 
cohort suggest that for trial design and informed consent, exploratory efforts will be 
required to accurately match risk estimates to characteristics of the trial population. 
 
Overall, APOE-ε4-associated incidence is somewhat lower in the presented cohorts than in 
models findings previously available in the literature, although NACC findings were largely 
similar to previous prospective analyses in the same cohort,19 although that study focused 
mostly on the relative risk of APOΕ-ε4 across different age ranges, without incorporating 
other predictor variables, and did not perform their analysis in a competing risk framework, 
which is vital to avoid overestimation of cumulative incidences due to mortality. The three 
population cohorts were generally similar, within expected sampling variation, in their 
estimates of cumulative incidence for most age and APOE strata. The difference between the 
population-based cohort studies and NACC, on the other hand, is striking. Large variability in 
risk estimates related to ascertainment and assessment methods has been reported 
previously for MCI and dementia prevalence.50,51 Such variability can occur in a variety of 
settings, but is a particular problem for common disorders like MCI where a subtle gradation 
from the normal makes rates especially sensitive to thresholding (similar to for example 
Attention Deficit Hyperactivity Disorder, major depression, and osteoarthritis). As might be 
expected, absolute risk is much more vulnerable to methodological differences than relative 
risk, especially over shorter time intervals, and for the MCI/dementia outcome rather than 
the dementia alone outcome. This is underscored by the generally similar relative hazards 
across the regression analyses. Notwithstanding the NACC cohort is a volunteer cohort, and 
as such would not be expected to represent of the general population. Individuals join this 
cohort for a variety of reasons, of which concerns about family history and their own 
memory are likely to play a role, as evidence by the relatively high APOE-ε4 allele frequency. 
As family history increases risk beyond the APOE-ε4 effect,52,53 this likely contributed to 
some of the observed differences in incidence. Another potential source of difference is the 
very high level of educational attainment within the NACC cohort. While higher education is 
associated with lower risk of dementia overall, among those with memory concerns, the risk 
has been seen to be higher,54 and this may be particularly true for the highly educated 
individuals who form a substantial fraction of the NACC cohort. Another issue is the high 
proportion of women in the NACC cohort. Different reasons between sexes for volunteering 
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may underlie the increased risks for men in NACC, as opposed to the other cohorts. Last, 
within NACC there is substantial drop out and variable effort to retain subjects, and 
decisions by participants and centre staff are not likely to be random with respect to 
cognitive and other variables. While the population-based cohort studies also have some 
drop out, systematic ongoing efforts to retain subjects and continuous surveillance even for 
those who do not attend study visits guarantee low attrition. Beyond these differences in 
ascertainment, demographics, and follow-up, there are differences in assessment between 
NACC and the three population-based cohorts that should be noted. The population-based 
cohorts evaluate cognition with a screening procedure typically followed by more formal 
clinical evaluation of subjects who screen positive. While direct clinical evaluation of all 
participants at each NACC site is a strength, there are procedural differences across sites, 
quality control is limited, and the reliability of NACC diagnosis is not well established. Of 
course, it is likely that there is some insensitivity to MCI and even dementia in the 
population-based cohort studies, as well as differential loss to follow-up, but on balance the 
volunteer nature of the NACC cohort with limited quality control across sites, and the 
consistency of the population-based findings tend to favour the lower cumulative incidence.  
  
One could argue that previously available modelled estimates for APOE-ε4-associated 
absolute risk for dementia are high (50-67%),12,14 and thus favour the NACC estimates. Our 
estimates of lifetime risk for dementia for APOE-ε44 carriers from the Framingham Heart 
Study and the Rotterdam Study are in the 31-40% range. However, there are some biases in 
the previously modelled estimates that overall are more likely to yield over- rather than 
underestimates of risk. In the REVEAL Study,12 risk curves for incidence were derived from 
relatives and spouses in a family sample ascertained from a clinical population.13 These 
incidence rates are expected to be higher than those in the general population. In addition, 
the relative risks by sex, age, and genotype were applied from a large meta-analysis done 
primarily in clinically ascertained, younger onset families,11 again yielding higher 
estimates.11,55 The competing risk of death was furthermore not addressed in cumulative 
incidence estimates, which also would tend to bias estimates upward, and the applied 
models did not account for the correlation among observations in the family sample used for 
incidence, which again might lead to bias.56 For the estimates used by 23 and Me,14 relative 
risks from the European GWAS16 were applied to incidence estimates from the Rochester,17 
and PAQUID cohorts.18 The relative risk estimates come from cases and controls, with 
younger cases (with a greater APOE-ε4 effect) overrepresented. In addition, these models 
assumed that the controls in GWAS samples were representative of the overall population, 
which likely does not hold with a very common disease like dementia, because at higher 
ages those without dementia are fundamentally a selected sample. This also would tend to 
bias the estimates upward.   
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In the regression models, we observed consistent effects of age and APOE-ε4 dose across 
the univariable and multivariable models, persisting even when other demographic factors, 
cognitive variables, and family history were taken into account. Education also exhibited a 
dose response, but less consistently, as much illustrating as illuminating the profound 
differences in education across these four samples. Ascertainment and cultural differences 
across disparate samples may have contributed to sex differences. In the population-based 
cohorts, there was strong attenuation of the estimates of sex when adjusting for educational 
attainment, suggesting lack of education in women of older birth cohorts may partly explain 
the difference. Remarkably, in NACC risk was higher in men, which likely relates to 
ascertainment differences in this convenience sample, as noted above. Also of potential 
relevance, both to potential participants wishing to understand their absolute risk and to 
investigators designing clinical trials, both cognitive screen performance and subjective 
memory concerns are associated with an increased hazard of MCI or dementia. All in all, 
these associations suggest that relatively simple individual characteristics might be used to 
further refine individual risk stratification beyond age and APOE genotype.  
 
Our findings have several implications for trial design and genetic counselling. For purposes 
of prevention trials, absolute cumulative incidence, both for the duration of the trial and 
over the remaining lifetime, are critical, but the differences across these cohort studies make 
it difficult to offer precise estimates, even with meta-analyses. In an ideal world, estimates 
would be tailored to the population entering the trial, or better still, the specific individuals, 
and would take into account not only explicit inclusion criteria but also any other 
measureable or predictable characteristics that might predict willingness to volunteer. A 
review of the first registrants on the GeneMatch Registry that serves as the primary US 
recruiting site for the Generation APOE-ε44 trial shows that individuals differ substantially 
beyond the explicit entry criteria. The population of 13,704 registrants enrolled thus far is 
relatively young (mean age 62.7, SD 5.2) and women are overrepresented (80%). Among the 
4,978 registrants who were asked about race/ethnicity, 92% are white. APOE-ε44 genotype 
is higher than in the general population at 4.5%, corresponding to an APOE-ε4 allele 
frequency of 20.4%, and among the 3,456 registrants asked about family history of dementia 
or Alzheimer’s, 70% said yes. While education was not measured, the high percent of 
females and familial predisposition suggests a population that may be more like NACC. Yet, 
over time, if broader recruiting efforts are applied to reach the target sample size, 
volunteers could gradually become more reflective of the general population, and lower 
risks might be expected. For genetic counselling, any risk information would need to give a 
broad range of estimates to reflect uncertainty within cohorts and variation across cohorts. 
Because risk for disease is ongoing beyond trial duration, and lifetime risks are more stable 
than short-term risks, these lifetime risk could be more informative for genetic disclosure. 
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However, such risks may be less salient to some of those considering enrolment in trials at 
younger ages. Relative risks by APOE genotype or APOE-ε4 dose have limited relevance, but 
may provide context. If these are provided, risk should be compared to the general 
population (based on a weighted average across APOE genotypes) rather than the typical 
“no APOE-ε4” base category used in regression models, which would more fairly allow a 
participant to put his or her own risk in the context of friends and acquaintances of unknown 
genotype. On the basis of our regression findings, for APOE-ε44 homozygotes, adjusted 
relative risks for MCI/dementia are 2.7 for NACC, 3.4 for Framingham, and 2.4 for 
Rotterdam, so disclosing a relative risk of about 3-fold compared to the general population 
would be sensible. Use of pictographs as a visual aid to risk communication could be useful, 
given their ability to visually represent both absolute and relative risk information 
simultaneously.57 In addition, there is a robust literature on genetic risk communication that 
can inform best practice when APOE information is disclosed to asymptomatic individuals.58  
 
A major limitation of the current study is that APOE-ε44 samples are small despite the large 
size of the initial cohorts, particularly for SALSA. This limits the stability of stratified 
cumulative incidence estimates, as well as regression coefficients for APOE dose. Second, 
while the four cohorts are heterogeneous in sex distribution and education, there is little 
ethnic and racial diversity, so the findings are less relevant to participants of non-European 
background. Third, variations in definitions of the exposure and outcome variables may 
hamper comparison among cohorts. As noted above, each sample uses different criteria to 
define unimpaired at baseline, and to screen, assess, and diagnose new onsets. Different 
psychometric tests are applied, and even the same test performs differently across different 
groups, which may be solved only in part by education and/or age-adjusted norms. Other 
variation may come from differences in definitions (e.g. family history) or in how information 
is acquired (e.g. memory concerns by questionnaire or overall clinical impression). 
Moreover, some variables, notably levels of education, may be defined similarly but have 
different meanings within different cultural contexts. Nevertheless, as we have shown, 
relative risk estimates are consistent despite this variation.  
 
In conclusion, prospective cohort studies can be used to inform study design, power, and 
informed consent in clinical trials among cognitively healthy individuals. While trial designers 
and participants may be most interested in absolute risk over relatively short intervals, such 
estimations are less robust than long-term risks, and more susceptible to changes in 
demographic and clinical characteristics between populations. Informed consent and 
optimal trial design is therefore best served by matching eligible trial participants to 
available observational cohort studies as closely as possible, which will require exploratory 
efforts to accurately determine characteristics of the trial population. 
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across disparate samples may have contributed to sex differences. In the population-based 
cohorts, there was strong attenuation of the estimates of sex when adjusting for educational 
attainment, suggesting lack of education in women of older birth cohorts may partly explain 
the difference. Remarkably, in NACC risk was higher in men, which likely relates to 
ascertainment differences in this convenience sample, as noted above. Also of potential 
relevance, both to potential participants wishing to understand their absolute risk and to 
investigators designing clinical trials, both cognitive screen performance and subjective 
memory concerns are associated with an increased hazard of MCI or dementia. All in all, 
these associations suggest that relatively simple individual characteristics might be used to 
further refine individual risk stratification beyond age and APOE genotype.  
 
Our findings have several implications for trial design and genetic counselling. For purposes 
of prevention trials, absolute cumulative incidence, both for the duration of the trial and 
over the remaining lifetime, are critical, but the differences across these cohort studies make 
it difficult to offer precise estimates, even with meta-analyses. In an ideal world, estimates 
would be tailored to the population entering the trial, or better still, the specific individuals, 
and would take into account not only explicit inclusion criteria but also any other 
measureable or predictable characteristics that might predict willingness to volunteer. A 
review of the first registrants on the GeneMatch Registry that serves as the primary US 
recruiting site for the Generation APOE-ε44 trial shows that individuals differ substantially 
beyond the explicit entry criteria. The population of 13,704 registrants enrolled thus far is 
relatively young (mean age 62.7, SD 5.2) and women are overrepresented (80%). Among the 
4,978 registrants who were asked about race/ethnicity, 92% are white. APOE-ε44 genotype 
is higher than in the general population at 4.5%, corresponding to an APOE-ε4 allele 
frequency of 20.4%, and among the 3,456 registrants asked about family history of dementia 
or Alzheimer’s, 70% said yes. While education was not measured, the high percent of 
females and familial predisposition suggests a population that may be more like NACC. Yet, 
over time, if broader recruiting efforts are applied to reach the target sample size, 
volunteers could gradually become more reflective of the general population, and lower 
risks might be expected. For genetic counselling, any risk information would need to give a 
broad range of estimates to reflect uncertainty within cohorts and variation across cohorts. 
Because risk for disease is ongoing beyond trial duration, and lifetime risks are more stable 
than short-term risks, these lifetime risk could be more informative for genetic disclosure. 
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However, such risks may be less salient to some of those considering enrolment in trials at 
younger ages. Relative risks by APOE genotype or APOE-ε4 dose have limited relevance, but 
may provide context. If these are provided, risk should be compared to the general 
population (based on a weighted average across APOE genotypes) rather than the typical 
“no APOE-ε4” base category used in regression models, which would more fairly allow a 
participant to put his or her own risk in the context of friends and acquaintances of unknown 
genotype. On the basis of our regression findings, for APOE-ε44 homozygotes, adjusted 
relative risks for MCI/dementia are 2.7 for NACC, 3.4 for Framingham, and 2.4 for 
Rotterdam, so disclosing a relative risk of about 3-fold compared to the general population 
would be sensible. Use of pictographs as a visual aid to risk communication could be useful, 
given their ability to visually represent both absolute and relative risk information 
simultaneously.57 In addition, there is a robust literature on genetic risk communication that 
can inform best practice when APOE information is disclosed to asymptomatic individuals.58  
 
A major limitation of the current study is that APOE-ε44 samples are small despite the large 
size of the initial cohorts, particularly for SALSA. This limits the stability of stratified 
cumulative incidence estimates, as well as regression coefficients for APOE dose. Second, 
while the four cohorts are heterogeneous in sex distribution and education, there is little 
ethnic and racial diversity, so the findings are less relevant to participants of non-European 
background. Third, variations in definitions of the exposure and outcome variables may 
hamper comparison among cohorts. As noted above, each sample uses different criteria to 
define unimpaired at baseline, and to screen, assess, and diagnose new onsets. Different 
psychometric tests are applied, and even the same test performs differently across different 
groups, which may be solved only in part by education and/or age-adjusted norms. Other 
variation may come from differences in definitions (e.g. family history) or in how information 
is acquired (e.g. memory concerns by questionnaire or overall clinical impression). 
Moreover, some variables, notably levels of education, may be defined similarly but have 
different meanings within different cultural contexts. Nevertheless, as we have shown, 
relative risk estimates are consistent despite this variation.  
 
In conclusion, prospective cohort studies can be used to inform study design, power, and 
informed consent in clinical trials among cognitively healthy individuals. While trial designers 
and participants may be most interested in absolute risk over relatively short intervals, such 
estimations are less robust than long-term risks, and more susceptible to changes in 
demographic and clinical characteristics between populations. Informed consent and 
optimal trial design is therefore best served by matching eligible trial participants to 
available observational cohort studies as closely as possible, which will require exploratory 
efforts to accurately determine characteristics of the trial population. 
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ABSTRACT  
 
Family history is an important risk factor for dementia, but its applicability for clinical risk 
stratification largely depends on the magnitude of the associated risk. Age at onset and sex 
of the affected relative have been shown important determinants of familial risk in other 
diseases, such as myocardial infarction and stroke, and while several small brain imaging 
studies do suggest preferential maternal transmission of susceptibility to 
neurodegeneration, no published studies have determined the risk of dementia by age- and 
sex-specific parental family history. Between 2000 and 2002, we assessed parental history of 
dementia in non-demented participants of the Rotterdam Study. We investigated 
associations of parental history with risk of dementia until 2015, adjusting for demographics, 
cardiovascular risk factors, and known genetic risk variants. Furthermore, we determined 
the association of parental history with markers of neurodegeneration and vascular disease 
on MRI. Of 2,087 participants (mean age 64 years, 55% female), 407 (19.6%) reported a 
history of dementia in either parent (mean age at diagnosis: 79 years). During a mean 
follow-up of 12.2 years, 142 participants developed dementia. Parental history was 
associated with risk of dementia independent of known genetic risk factors (hazard ratio 
[95% confidence interval]: 1.67 [1.12-2.48]), in particular when parents were diagnosed at 
younger age (<80 years: HR 2.58 [1.61-4.15] versus ≥80 years: 1.01 [0.58-1.77]). Accordingly, 
age at diagnosis in probands was highly correlated with age at diagnosis in their parents <80 
years (r=0.57, P=0.001), but not thereafter (r=0.17,P=0.55). Among 1,161 non-demented 
participants with brain MRI, parental history related to lower cerebral perfusion, and higher 
burden of white matter lesions and microbleeds. Dementia risk and MRI markers were 
similar for paternal versus maternal history. In conclusion, enquiring age at parental 
diagnosis greatly enhances the value of taking a family history of dementia. Unexplained 
heredity is substantial, and may in part be attributed to cerebral hypoperfusion and small-
vessel disease. We found no evidence of preferential maternal compared to paternal 
transmission. 
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INTRODUCTION 
 
Family history of dementia is an important risk factor for dementia and Alzheimer’s disease, 
independent of known genetic risk factors for Alzheimer’s disease.1 Yet, its applicability for 
clinical risk stratification and research about underlying mechanisms largely depends on the 
magnitude of the associated risk. For other diseases, such as myocardial infarction, the 
strength of associations between family history and risk of disease diminishes with 
increasing age at which family members are affected.2 Similarly, with regard to dementia, 
the effect of its major genetic risk factor (APOE) as well as the heritability of brain 
morphology decline with age,3,4 but prospective studies that quantify associations of family 
history with risk of dementia by age at onset of affected relatives are lacking.   
 
In search of potential mechanisms that account for the unexplained heredity of dementia, 
several studies have recently turned to imaging markers of neurodegeneration. These 
generally explorative studies found that in healthy adults, a family history of dementia is 
associated with structural brain changes,5-8 and various other markers of 
neurodegeneration, including white matter integrity,9-10 resting state connectivity,11 glucose 
metabolism,12-15 hypoperfusion,16 and β-amyloid and tau.12,14,15 Interestingly, several of 
these studies have suggested a stronger association with maternal compared to paternal 
family history,6,12-16 but this was not confirmed in two other reports.5,7 Sex-specific 
transmission is plausible in view of findings for ischaemic stroke and myocardial 
infarction,17,18 and may relate to chromosome X mutations, mitochondrial DNA, or 
imprinting.19 However, no published studies have assessed risk of developing dementia by 
paternal and maternal history.  
 
We therefore investigated the association of family history, by age at onset and sex of 
affected parent, with risk of dementia in the general population, and explored underlying 
imaging abnormalities on structural MRI. 
 
 
METHODS 
 
Study population 
This study is embedded within the Rotterdam Study, a large ongoing population-based 
cohort study in the Netherlands among inhabitants aged ≥55 years from the Ommoord area 
in Rotterdam. For the current study, we included the second wave of invitees, recruited 
between 2000 and 2002. The Rotterdam Study methods have been described in detail 
previously.20 In brief, participants were interviewed at home and subsequently examined at 
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imaging abnormalities on structural MRI. 
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This study is embedded within the Rotterdam Study, a large ongoing population-based 
cohort study in the Netherlands among inhabitants aged ≥55 years from the Ommoord area 
in Rotterdam. For the current study, we included the second wave of invitees, recruited 
between 2000 and 2002. The Rotterdam Study methods have been described in detail 
previously.20 In brief, participants were interviewed at home and subsequently examined at 



C H A P T E R  5 . 3  

272 
 

the research centre from January 2000 to November 2002, which was used as baseline for 
this study. Family history of dementia was assessed during baseline interview. Of 3,011 
eligible participants, 2,247 (74.6%) underwent home interview. From August 2005 until July 
2013, surviving participants of the subsequent examination cycle were all invited for 
magnetic resonance imaging (MRI).  
 
Assessment of family history 
Participants were questioned by trained interviewers about parental family history of 
dementia, using a structured questionnaire. If this question was answered positively, they 
were further asked about specific paternal and maternal history of dementia, including age 
at diagnosis. Vital status of parents and age of death were also recorded. 
 
Genotyping and calculation of genetic risk scores 
DNA was extracted from blood samples drawn by venipuncture at baseline. APOE genotype 
was determined with a bi-allelic TaqMan assay (rs7412 and rs429358) in 97.9% of 
participants. The majority of samples (81.1%) were further genotyped using the Illumina 
610K and 660K chip, and imputed to the Haplotype Reference Consortium reference panel 
(v1.0) with Minimac 3. We included 23 genetic variants that showed genome wide significant 
evidence of association with Alzheimer’s disease to calculate a weighted genetic risk score 
(Table 1). The genetic risk score was calculated as the sum of the products of SNP dosages of 
the 23 genetic variants (excluding APOE) and their respective reported effect estimates. All 
23 variants selected for the calculation of the genetic risk score were well imputed 
(imputation score R2>0.3, median=0.99).  
  
MRI scan protocol and image processing 
Brain MRI was done on a 1.5 T scanner (GE Healthcare, Milwaukee, WI, USA), with use of an 
8-channel head coil.21 We acquired a high-resolution axial T1-weighted sequence, proton-
density-weighted (PD) sequence, a fluid attenuated inversion recovery (FLAIR) sequence, 
and a T2*-weighted gradient echo sequence, as described previously.21 Quantification of 
parenchymal volume and volume of white matter hyperintensities was done using an 
automated tissue segmentation method.22 All segmentations were inspected and manually 
corrected if so required. All scans were appraised by trained research physicians, blinded to 
clinical data, for the presence of cerebral microbleeds and lacunar infarcts (i.e. focal lesions 
≥3 and <15mm in size with similar signal intensity as cerebrospinal fluid on all sequences). 
Cerebral blood flow was determined from 2D phase-contrast images with custom software 
(Cinetool version 4; General Electric Healthcare).23 We calculated total brain perfusion (in 
mL/min per 100 mL brain tissue) by dividing total blood flow (mL/min) by each individual's 
brain volume (mL) and multiplying the result by 100. 
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the research centre from January 2000 to November 2002, which was used as baseline for 
this study. Family history of dementia was assessed during baseline interview. Of 3,011 
eligible participants, 2,247 (74.6%) underwent home interview. From August 2005 until July 
2013, surviving participants of the subsequent examination cycle were all invited for 
magnetic resonance imaging (MRI).  
 
Assessment of family history 
Participants were questioned by trained interviewers about parental family history of 
dementia, using a structured questionnaire. If this question was answered positively, they 
were further asked about specific paternal and maternal history of dementia, including age 
at diagnosis. Vital status of parents and age of death were also recorded. 
 
Genotyping and calculation of genetic risk scores 
DNA was extracted from blood samples drawn by venipuncture at baseline. APOE genotype 
was determined with a bi-allelic TaqMan assay (rs7412 and rs429358) in 97.9% of 
participants. The majority of samples (81.1%) were further genotyped using the Illumina 
610K and 660K chip, and imputed to the Haplotype Reference Consortium reference panel 
(v1.0) with Minimac 3. We included 23 genetic variants that showed genome wide significant 
evidence of association with Alzheimer’s disease to calculate a weighted genetic risk score 
(Table 1). The genetic risk score was calculated as the sum of the products of SNP dosages of 
the 23 genetic variants (excluding APOE) and their respective reported effect estimates. All 
23 variants selected for the calculation of the genetic risk score were well imputed 
(imputation score R2>0.3, median=0.99).  
  
MRI scan protocol and image processing 
Brain MRI was done on a 1.5 T scanner (GE Healthcare, Milwaukee, WI, USA), with use of an 
8-channel head coil.21 We acquired a high-resolution axial T1-weighted sequence, proton-
density-weighted (PD) sequence, a fluid attenuated inversion recovery (FLAIR) sequence, 
and a T2*-weighted gradient echo sequence, as described previously.21 Quantification of 
parenchymal volume and volume of white matter hyperintensities was done using an 
automated tissue segmentation method.22 All segmentations were inspected and manually 
corrected if so required. All scans were appraised by trained research physicians, blinded to 
clinical data, for the presence of cerebral microbleeds and lacunar infarcts (i.e. focal lesions 
≥3 and <15mm in size with similar signal intensity as cerebrospinal fluid on all sequences). 
Cerebral blood flow was determined from 2D phase-contrast images with custom software 
(Cinetool version 4; General Electric Healthcare).23 We calculated total brain perfusion (in 
mL/min per 100 mL brain tissue) by dividing total blood flow (mL/min) by each individual's 
brain volume (mL) and multiplying the result by 100. 
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Dementia screening and surveillance 
Participants were screened for dementia at baseline and subsequent centre visits using the 
Mini-Mental State Examination (MMSE) and the Geriatric Mental State Schedule (GMS) 
organic level.24 Those with MMSE<26 or GMS>0 underwent further investigation and 
informant interview including the Cambridge Examination for Mental Disorders of the 
Elderly (CAMDEX). Additionally, the entire cohort was continuously under surveillance for 
dementia through electronic linkage of the study centre with medical records from general 
practitioners and the regional institute for outpatient mental healthcare. Available clinical 
neuroimaging data were reviewed when required for diagnosis of dementia subtype. A 
consensus panel headed by a consultant neurologist established the final diagnosis 
according to standard criteria for dementia (DSM-III-R), and Alzheimer’s disease (NINCDS-
ADRDA). Follow-up until 1st January 2015 was virtually complete (96.8% of potential person 
years). Within this period, participants were censored at date of dementia diagnosis, death, 
loss to follow-up, or 1st January 2015, whichever came first. 
 
Other measurements 
We assessed educational attainment (lower, further, or higher education), smoking status 
(never, former, or current), and use of antihypertensive or lipid-lowering medication at 
baseline by interview. Lipid levels were measured from fasting serum at baseline. 
Hyperlipidaemia was defined as LDL cholesterol >4.9 mmol/L (190 mg/dL), or use of lipid-
lowering medication. Blood pressure was measured twice on the right arm with a random-
zero sphygmomanometer. Hypertension was defined as elevated systolic or diastolic blood 
pressure (>140/90 mmHg) or use of antihypertensive medication. Body mass index was 
computed from measurements of height and weight (kg/m2). A diagnosis of diabetes was 
based on the use of blood glucose-lowering medication or a fasting serum glucose 
≥7.0 mmol/L.  
 
Analysis 
Analyses included all non-demented participants who provided data on family history at 
baseline. Missing data on non-genetic covariates (≤1.3%) were imputed using 5-fold multiple 
imputation, based on determinant, outcome and included covariates. Distribution of 
covariates was similar in the imputed and non-imputed dataset. We determined the 
association between parental family history of dementia and risk of dementia and 
Alzheimer’s disease, using Cox proportional hazard models, and stratified results by paternal 
and maternal family history (or both), sex of proband, and mean age of proband at time of 
interview. We verified that choice of x-axis (age versus follow-up time) did not affect the 
results. Subsequently, we determined risk of dementia and Alzheimer’s disease per decade 
increase in age at onset in parents. To account for potential misclassification of determinant 
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(i.e. parents deceased at young age, or developing dementia after interview) or outcome 
(i.e. participants who did not yet reach old age at end of follow-up), we performed sensitivity 
analyses excluding family history of parents who died prematurely (<65 years), excluding 
participants <70 years at baseline, and excluding non-demented participants censored 
before age 80.  
 
Next, we compared characteristics of the subset of participants with MRI to those without 
MRI using age- and sex-adjusted analysis of covariance (ANCOVA) for continuous and logistic 
regression for dichotomous variables. We then determined the association between family 
history (overall and stratified by sex of affected parent and age at parental diagnosis) and 
(standardised values of) total brain parenchymal volume, hippocampal volume, cerebral 
perfusion, volume of white matter hyperintensities, presence of lacunar infarcts (yes vs. no), 
and cerebral microbleed count (classified as 0, 1, or ≥2). For continuous outcome variables 
these analyses were performed using linear regression; for categorical outcomes we used 
logistic and multinomial regression. Age at parental diagnosis was stratified at 80, as this 
approximates the mean age at diagnosis in the general population (illustrated by a mean age 
of 80.7 years at diagnosis for our participants, and 78.5 years at time of parental diagnosis). 
 
All analyses were adjusted for age (at time of interview or MRI scan where appropriate) and 
sex, and additionally in a second model for level of education, smoking habits, history of 
hypertension, hyperlipidaemia, diabetes, and body mass index. To account for known 
genetic risk, in a third and fourth model we additionally adjusted for APOE genotype, and 
APOE genotype plus the genetic risk score for Alzheimer’s disease, respectively. All imaging 
analyses were furthermore adjusted for total intracranial volume and interval between 
interview and MRI scan.  
 
Analyses were done using IBM SPSS Statistics version 23.0 (IBM Corp, Armonk, NY, USA). 
Alpha-level was set at 0.05. 
 
  
RESULTS 
 
Of 2,233 eligible participants, 2,078 (93.1%) provided data on parental family history. Family 
history was positive for dementia in 407 (19.6%) persons. Mean age at diagnosis in affected 
parents was 78.5 years. Baseline characteristics of participants are presented in Table 2. 
 
During a mean follow-up of 12.2 years, 142 participants developed dementia, of whom 105 
(73.9%) had Alzheimer’s disease. Mean age at diagnosis in participants was 80.7 years. 
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Characteristics All participants 
(N=2078) 

With MRI    
(N =1150) 

Without MRI        
(N=928) 

Age 64.1 ±7.5 62.0 ±5.5 66.7 ±8.8 
Female sex 1142 (55.0) 614 (53.4) 528 (56.9) 
Level of education    
    Lower 1081 (52.7) 552 (48.9) 529 (57.3) 
    Further 603 (29.4) 349 (30.9) 254 (27.5) 
    Higher 369 (18.0) 228 (20.2) 141 (15.3) 
Smoking history    
     Former 1047 (50.6) 587 (51.4) 460 (49.6) 
     Current 388 (18.7) 204 (17.8) 184 (19.8) 
Hypertension 1235 (59.5) 599 (52.1) 636 (68.5) 
Diabetes  268 (12.9) 110 (9.6) 158 (17.0) 
Body-mass index (kg/m2) 27.2 ±4.0 26.9 ±3.6 27.5 ±4.5 
Hyperlipidaemia  611 (29.4) 330 (28.7) 281 (30.3) 
APOE genotype    
    ε3/ε3 1174 (57.7) 663 (58.7) 511 (56.5) 
    ε2/ε2 or ε2/ε3 292 (14.4) 161 (14.3) 131 (14.5) 
    ε2/ε4, ε3/ε4, or ε4/ε4 568 (27.9) 305 (27.0) 263 (29.1) 
Genetic risk score for Alzheimer’s disease -0.10 ±0.32 -0.09 ±0.32 -0.10 ±0.34 
Family history of dementia 407 (19.6) 229 (19.9) 178 (19.2) 
    Paternal 116 (5.6) 65 (5.7) 51 (5.5) 
    Maternal  273 (13.1) 156 (13.6) 117 (12.6) 
    Both 18 (0.9) 8 (0.7) 10 (1.1) 
    Age at diagnosis in affected parent 78.5 ±8.3 79.2 ±7.5 77.5 ±9.1 

Table 2. Baseline characteristics. Data are presented as frequency (%) for categorial, and mean±standard 
deviation for continuous variables. 

 

Parental family history of dementia was associated with all-cause dementia and in particular 
Alzheimer’s disease, which was only partly explained by known genetic variants (Table 3). 
These associations were similar for paternal and maternal family history of dementia (Table 
3), and did not vary significantly by sex of proband (HR 1.82 [0.99-3.38] in men versus 1.43 
[0.84-2.44] in women; P-value for interaction=0.44). Results were unaffected by excluding 
participants whose parents died at young age (before the age of 65: HR 1.95 [1.00-3.82]), 
and grossly similar for participants aged below and above the mean age of 64 years at time 
of interview (HR 2.45 [1.69-3.56] versus 1.93 [1.28-2.93]; P-value for interaction=0.36).  
 
Associations between parental history of dementia and risk of dementia in probands were 
dependent on age at diagnosis in the parent (Table 3). Risk estimates gradually declined per 
advanced decade of age at diagnosis in parents, such that risk was highest when parents 
were diagnosed before age 80 (HR [95% CI] before: 2.58 [1.61-4.15] versus after 1.01 [0.58-
1.77]). This trend was similar for Alzheimer’s disease only. Accordingly, age at diagnosis in 
probands was highly correlated with age at diagnosis in their parents when parents were 
diagnosed before age 80 (r=0.57, P=0.001), but not thereafter (r=0.17, P=0.55). In sensitivity 
analyses to minimise potential information bias, age trends were similar when excluding  
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Characteristics All participants 
(N=2078) 

With MRI    
(N =1150) 

Without MRI        
(N=928) 

Age 64.1 ±7.5 62.0 ±5.5 66.7 ±8.8 
Female sex 1142 (55.0) 614 (53.4) 528 (56.9) 
Level of education    
    Lower 1081 (52.7) 552 (48.9) 529 (57.3) 
    Further 603 (29.4) 349 (30.9) 254 (27.5) 
    Higher 369 (18.0) 228 (20.2) 141 (15.3) 
Smoking history    
     Former 1047 (50.6) 587 (51.4) 460 (49.6) 
     Current 388 (18.7) 204 (17.8) 184 (19.8) 
Hypertension 1235 (59.5) 599 (52.1) 636 (68.5) 
Diabetes  268 (12.9) 110 (9.6) 158 (17.0) 
Body-mass index (kg/m2) 27.2 ±4.0 26.9 ±3.6 27.5 ±4.5 
Hyperlipidaemia  611 (29.4) 330 (28.7) 281 (30.3) 
APOE genotype    
    ε3/ε3 1174 (57.7) 663 (58.7) 511 (56.5) 
    ε2/ε2 or ε2/ε3 292 (14.4) 161 (14.3) 131 (14.5) 
    ε2/ε4, ε3/ε4, or ε4/ε4 568 (27.9) 305 (27.0) 263 (29.1) 
Genetic risk score for Alzheimer’s disease -0.10 ±0.32 -0.09 ±0.32 -0.10 ±0.34 
Family history of dementia 407 (19.6) 229 (19.9) 178 (19.2) 
    Paternal 116 (5.6) 65 (5.7) 51 (5.5) 
    Maternal  273 (13.1) 156 (13.6) 117 (12.6) 
    Both 18 (0.9) 8 (0.7) 10 (1.1) 
    Age at diagnosis in affected parent 78.5 ±8.3 79.2 ±7.5 77.5 ±9.1 

Table 2. Baseline characteristics. Data are presented as frequency (%) for categorial, and mean±standard 
deviation for continuous variables. 

 

Parental family history of dementia was associated with all-cause dementia and in particular 
Alzheimer’s disease, which was only partly explained by known genetic variants (Table 3). 
These associations were similar for paternal and maternal family history of dementia (Table 
3), and did not vary significantly by sex of proband (HR 1.82 [0.99-3.38] in men versus 1.43 
[0.84-2.44] in women; P-value for interaction=0.44). Results were unaffected by excluding 
participants whose parents died at young age (before the age of 65: HR 1.95 [1.00-3.82]), 
and grossly similar for participants aged below and above the mean age of 64 years at time 
of interview (HR 2.45 [1.69-3.56] versus 1.93 [1.28-2.93]; P-value for interaction=0.36).  
 
Associations between parental history of dementia and risk of dementia in probands were 
dependent on age at diagnosis in the parent (Table 3). Risk estimates gradually declined per 
advanced decade of age at diagnosis in parents, such that risk was highest when parents 
were diagnosed before age 80 (HR [95% CI] before: 2.58 [1.61-4.15] versus after 1.01 [0.58-
1.77]). This trend was similar for Alzheimer’s disease only. Accordingly, age at diagnosis in 
probands was highly correlated with age at diagnosis in their parents when parents were 
diagnosed before age 80 (r=0.57, P=0.001), but not thereafter (r=0.17, P=0.55). In sensitivity 
analyses to minimise potential information bias, age trends were similar when excluding  
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non-demented participants censored before they reached age 80, or excluding participants 
<70 years at baseline (data not shown). Consistent with overall estimates in Table 2, known 
genetic risk factors accounted for only part of the large increased risk with parents affected 
before age 80.  
 
Of all 2,078 participants who provided family history, 1150 (55.3%) underwent MRI, a 
median 5.6 years (IQR 5.1-10.6) after baseline interview. Compared to non-participants, MRI 
participants were generally younger, and had a more favourable cardiovascular risk profile 
(Table 2). Thirty-four participants who developed dementia between interview and MRI 
were excluded. Lacunar infarcts were seen in 95 (8.5%) individuals, and at least one cerebral 
microbleed in 251 (22.5%) individuals (1 in 144, and ≥2 in 107 individuals). 
 
Overall, family history of dementia was not associated with total parenchymal volume or 
hippocampal volume, or with markers of small-vessel disease. However, after stratification 
for family history by age at parental diagnosis, we found that participants whose parents 
were affected at younger age had a larger burden of white matter lesions and cerebral 
microbleeds (Figure 1). In addition, those with positive family history had lower cerebral 
blood flow regardless of age at parental onset (Figure 1). Apart from smaller hippocampal 
volume with paternal family history, results again were similar for paternal and maternal 
family history (Figure 2), regardless of age at parental diagnosis.  
 
 
DISCUSSION 
 
In this prospective population-based study we found an increased risk of dementia with 
positive family history that is strongly dependent on parental age at diagnosis, but does not 
differ by paternal or maternal predisposition. Known genetic risk factors accounted for a 
relatively small share of parental risk. Remaining risk may in part be explained by observed 
associations of family history with cerebral hypoperfusion and increased burden of small-
vessel disease in non-demented participants. 
 
The excess risk of dementia with positive family history in our study is comparable with 
estimates from prior case-control studies.25,26 The lack of attenuation after controlling for 
demographic and lifestyle factors supports family history as a measure of heredity rather 
than a marker of shared environmental factors. Moreover, known genetic risk factors 
explained only part of the association in our study, highlighting the important role of 
unidentified genetic factors involved in the aetiology of dementia.27 Remaining risk may be 
due to unidentified epigenetic signatures, low-risk common variants, or high-risk rare 
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non-demented participants censored before they reached age 80, or excluding participants 
<70 years at baseline (data not shown). Consistent with overall estimates in Table 2, known 
genetic risk factors accounted for only part of the large increased risk with parents affected 
before age 80.  
 
Of all 2,078 participants who provided family history, 1150 (55.3%) underwent MRI, a 
median 5.6 years (IQR 5.1-10.6) after baseline interview. Compared to non-participants, MRI 
participants were generally younger, and had a more favourable cardiovascular risk profile 
(Table 2). Thirty-four participants who developed dementia between interview and MRI 
were excluded. Lacunar infarcts were seen in 95 (8.5%) individuals, and at least one cerebral 
microbleed in 251 (22.5%) individuals (1 in 144, and ≥2 in 107 individuals). 
 
Overall, family history of dementia was not associated with total parenchymal volume or 
hippocampal volume, or with markers of small-vessel disease. However, after stratification 
for family history by age at parental diagnosis, we found that participants whose parents 
were affected at younger age had a larger burden of white matter lesions and cerebral 
microbleeds (Figure 1). In addition, those with positive family history had lower cerebral 
blood flow regardless of age at parental onset (Figure 1). Apart from smaller hippocampal 
volume with paternal family history, results again were similar for paternal and maternal 
family history (Figure 2), regardless of age at parental diagnosis.  
 
 
DISCUSSION 
 
In this prospective population-based study we found an increased risk of dementia with 
positive family history that is strongly dependent on parental age at diagnosis, but does not 
differ by paternal or maternal predisposition. Known genetic risk factors accounted for a 
relatively small share of parental risk. Remaining risk may in part be explained by observed 
associations of family history with cerebral hypoperfusion and increased burden of small-
vessel disease in non-demented participants. 
 
The excess risk of dementia with positive family history in our study is comparable with 
estimates from prior case-control studies.25,26 The lack of attenuation after controlling for 
demographic and lifestyle factors supports family history as a measure of heredity rather 
than a marker of shared environmental factors. Moreover, known genetic risk factors 
explained only part of the association in our study, highlighting the important role of 
unidentified genetic factors involved in the aetiology of dementia.27 Remaining risk may be 
due to unidentified epigenetic signatures, low-risk common variants, or high-risk rare 
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variants like ABCA7 and SORL1, but until these are identified, our findings support obtaining 
family history over genome testing (only).28 The vast majority of familial excess risk was 
accounted for by parents diagnosed before age 80, in accordance with estimates modelled in 
a prior study.29 Age at diagnosis correlated well among parents and probands in this group, 
with correlations similar to those among relatives with early-onset Alzheimer’s disease.30 
Thus taking family history is much more informative when enquiring about parental onset of 
dementia, rather than dementia at any age. As a rule of thumb, 80 years seems a useful 
mark for differentiating risk in clinical practice, for preventive strategies, and for selection of 
participants for research purposes. 
 
The increased risk of dementia with parental family history was paralleled by lower cerebral 
perfusion, and an increased burden of cerebral white matter hyperintensities and 
microbleeds when parents were affected at younger age. Although one other study did not 
find an association of white matter hyperintensities with family history,8 loss of white matter 
integrity has been associated with family history in two smaller studies.9,10 Moreover, 
cerebral hypoperfusion was associated with family history of dementia in one study,16 and 
can also relate to reduced glucose metabolism reported with positive family history 
previously.12-15 As hypoperfusion,31,32 small-vessel disease,33 and cerebral microbleeds34 all 
carry an increased risk of dementia, these may reflect early pathophysiological changes in 
the brain of those predisposed for developing dementia. Subclinical changes in the brain 
occur up till decades before onset of dementia symptoms, and neuronal injury is thought to 
occur years before marked cerebral atrophy is seen on MRI.35 This might explain why we did 
not observe an overall association between family history of dementia and total brain 
volume. Similarly, two other studies reported differences in white matter integrity, as well as 
amyloid-β42 and tau in cerebrospinal fluid, in the absence of volumetric brain 
differences.10,36  As expected, the majority of dementia diagnoses in our study were of the 
Alzheimer subtype. Yet, these clinical diagnoses may partly reflect other pathology. In fact, 
mixed pathology is increasingly seen with dementia at higher age, and the risk conferred by 
a positive family history therefore likely reflects various aetiologies, of which we identified 
perfusion and small vessel disease as contributors.  
 
Although several smaller studies have reported particular or exclusive associations of 
maternal compared to paternal family history of dementia with biomarkers of 
neurodegeneration,6,12-16 other studies did not find such a difference.5,7 In this population-
based study, we did not find evidence of particular maternal transmission with either risk of 
dementia or imaging biomarkers. Of note, the majority of prior studies did not control for 
the effects of APOE, or even preferentially selected APOE ε4 carriers. As APOE may have a 
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more profound effect on risk of dementia in women,3 this might account for part of the 
associations previously found with maternal family history.  
 
Among the major strengths of our study are its population-based setting with detailed 
structured questionnaires, meticulous follow-up for dementia, and large sample of 
participants undergoing MRI. Yet, several limitations need to be discussed. First, albeit 
structured, interview questions remain susceptible to information bias, in particular 
regarding quantitative information such as age at diagnosis. Second, not all of our 
participants underwent MRI investigation and we cannot rule out selection bias with regard 
to the imaging analyses. Participants with MRI were generally younger with a favourable 
cardiovascular risk profile, but as they reported positive family history equally often as 
participants without MRI, this is unlikely to have affected relative risks. Third, despite similar 
results in sensitivity analyses, dementia onset after administrative censoring date in younger 
participants might have caused information bias. Fourth, part of the observed effect of 
family history may be attributable to identified high-risk rare genetic variants, such as ABCA7 
and SORL1. We had no exome sequencing data available, but given the very low prevalence 
of yet identified variants these are unlikely to explain a large part of the observed effect. 
Fifth, although we adjusted for many risk factors that probands may share with their 
parents, some residual confounding with regard to socio-economic status may exist. Finally, 
the vast majority of participants in our study are of Caucasian descent, potentially limiting 
generalisability to other ethnicities. 
 
In conclusion, enquiring age at parental diagnosis greatly enhances the value of taking a 
family history of dementia. Unexplained heredity is substantial, and may in part be 
attributed to cerebral hypoperfusion and small-vessel disease. Our findings do not support a 
preferential risk with maternal compared to paternal family history. 
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more profound effect on risk of dementia in women,3 this might account for part of the 
associations previously found with maternal family history.  
 
Among the major strengths of our study are its population-based setting with detailed 
structured questionnaires, meticulous follow-up for dementia, and large sample of 
participants undergoing MRI. Yet, several limitations need to be discussed. First, albeit 
structured, interview questions remain susceptible to information bias, in particular 
regarding quantitative information such as age at diagnosis. Second, not all of our 
participants underwent MRI investigation and we cannot rule out selection bias with regard 
to the imaging analyses. Participants with MRI were generally younger with a favourable 
cardiovascular risk profile, but as they reported positive family history equally often as 
participants without MRI, this is unlikely to have affected relative risks. Third, despite similar 
results in sensitivity analyses, dementia onset after administrative censoring date in younger 
participants might have caused information bias. Fourth, part of the observed effect of 
family history may be attributable to identified high-risk rare genetic variants, such as ABCA7 
and SORL1. We had no exome sequencing data available, but given the very low prevalence 
of yet identified variants these are unlikely to explain a large part of the observed effect. 
Fifth, although we adjusted for many risk factors that probands may share with their 
parents, some residual confounding with regard to socio-economic status may exist. Finally, 
the vast majority of participants in our study are of Caucasian descent, potentially limiting 
generalisability to other ethnicities. 
 
In conclusion, enquiring age at parental diagnosis greatly enhances the value of taking a 
family history of dementia. Unexplained heredity is substantial, and may in part be 
attributed to cerebral hypoperfusion and small-vessel disease. Our findings do not support a 
preferential risk with maternal compared to paternal family history. 
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ABSTRACT 
 
Alzheimer’s disease is the most common type of dementia, and one of the most heritable 
diseases in the elderly. Its major genetic determinant is the apolipoprotein E (APOE) gene, 
but twenty-three other common genetic variants have been identified which could be 
applied to risk stratification. We determined the effects of these twenty-three variants and 
APOE on cumulative incidence and age of onset of dementia between 1990 and 2016 in a 
prospective population-based cohort of 12,255 cognitively healthy participants aged ≥45 
years (59% female). Risk curves were stratified by APOE genotype, tertiles of a weighted 
genetic risk score (GRS) of the twenty-three genetic variants, and parental family history of 
dementia. During 133,123 person-years of follow-up (median 11.0 years), 1,609 participants 
developed dementia, of whom 1,262 (78.4%) were classified as Alzheimer’s disease, and 
4,590 persons died of other causes. The GRS modified the risks of dementia and Alzheimer’s 
disease, above and beyond APOE genotype, in particular for APOE ε44 carriers (P-value for 
interaction=0.04). In APOE ε44 carriers the difference in risk of dementia by age 85 between 
the high and low risk GRS tertile was 37.2% (27.0% for Alzheimer’s disease), translating into 
a 7- to 10-year difference in age at onset. Comparing risk extremes, i.e. APOE ε22/23 carriers 
with a low GRS versus APOE ε44 carriers with a high GRS, the risk difference by age 85 was 
70.3% for all-cause dementia (7.2% versus 77.5%, P<0.0001), and 58.6% for Alzheimer’s 
disease (4.1% versus 62.7%, P<0.0001). This translates into an 18- to 23-year difference in 
age at onset of dementia, and 18-29 years difference for Alzheimer’s disease. Incorporating 
parental family history further enhanced this difference for dementia to 83.8% (7.2% versus 
91.0%, P<0.0001). In conclusion, common genetic variants with small individual effects 
jointly modify the risk of dementia substantially, in particular in APOE ε4 carriers. These 
findings highlight the potential of common variants in combination with family history and 
APOE for risk stratification in the general population.  
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INTRODUCTION    
 
Dementia, with Alzheimer’s disease as its most common form, is a highly multi-factorial 
disease with a considerable genetic component.1 The strongest common genetic risk factor 
for dementia is the apolipoprotein E (APOE) gene,2 which has a protective allele (ε2), and a 
risk allele (ε4), in addition to the most common reference allele (ε3).3 Carriers of the APOE 
ε4 allele are at high risk of developing dementia, with absolute risk estimates from case-
control studies surpassing 50% by the age of 85, compared to less than 10% at this age for 
non-carriers.4,5 Because of this high risk, there is an increasing interest in preferentially 
including homozygote APOE ε4 carriers in trials during the pre-symptomatic phase of 
dementia, in order to reduce the necessary duration and size of these costly studies.6,7 
However, the clinical manifestation of dementia varies widely,8 with age at onset ranging 
from midlife to the ninth decade of life even within homozygote APOE ε4 carriers.4 Risk 
estimates using APOE alone therefore remain imprecise, with limited applicability in the 
population. 
 
In addition to APOE, twenty-three other common genetic variants have been identified in 
the past decade that significantly modify risk of Alzheimer’s disease.9-20 Recently, it has been 
shown that combining the effects of these twenty-three variants results in a polygenic risk 
score that is not only associated with risk of Alzheimer’s disease,21-23 but also with 
neuropathological hallmarks of Alzheimer’s disease,24 conversion of mild cognitive 
impairment to dementia,25-27 and the age at onset on dementia in both APOE ε4 carries and 
non-carriers.24 However, these findings await validation in sufficiently powered community-
based cohort studies,4,24 taking into account competing risk of death to prevent 
overestimation of absolute risks.28 Moreover, we have previously shown that parental family 
history of dementia captures much of the yet unaccounted heritability,29 and incorporation 
of family history along with common variants thus seems essential to achieve the precise 
predictions of genetic risk.  
 
In the present study, we yield over 25 years of data from a large community-based cohort to 
determine the aggregated effect of common genetic variants, by themselves and in 
conjunction with APOE, on the risk and age at onset of all-cause dementia and Alzheimer’s 
disease.  
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METHODS 
 
Study population 
This study is embedded in the population-based Rotterdam Study, details of which have 
been described previously.30 In brief, all residents of the Ommoord district in Rotterdam, the 
Netherlands, aged ≥55 years were invited to participate in the study in 1990. Of 10,215 
invitees, 7,983 agreed to take part (response rate 78%). The study was expanded twice: once 
in 2000, including 3,011 participants (response rate 67%) who had turned 55, or moved into 
the study area, and a second time in 2006, thereby lowering the entry age to 45 years, and 
including an additional 3,932 participants (response rate 65%). At total of 14,926 
participants thus take part in the study. Follow-up examinations at a dedicated study centre 
take place every 3 to 4 years. The present study includes all 12,255 initially non-demented 
participants who contributed follow-up time after the age of 60 years.  
 
Screening and surveillance for dementia 
Participants were screened for dementia at baseline and subsequent centre visits with the 
Mini-Mental State Examination and the Geriatric Mental State Schedule organic level.31 
Those with a Mini-Mental State Examination score <26 or Geriatric Mental State Schedule 
score >0 underwent further investigation and informant interview, including the Cambridge 
Examination for Mental Disorders of the Elderly. In addition, the entire cohort was 
continuously under surveillance for dementia through electronic linkage of the study 
database with medical records from general practitioners and the regional institute for 
outpatient mental health care. This linkage allows detection of interval cases of dementia 
between centre visits. Available clinical neuroimaging was used when required for diagnosis 
of dementia subtype. A consensus panel led by a consultant neurologist established the final 
diagnosis according to standard criteria for dementia (DSM-III-R) and Alzheimer's disease 
(NINCDS–ADRDA).32 Follow-up for dementia until 1st January 2014 (original cohort), 1st 
January 2015 (first expansion), and 1st January 2013 (second expansion) was near-complete 
(92% of potential person-years).  
 
Genotyping and family history 
DNA was extracted from blood samples drawn by venepuncture at the baseline visit, and 
genotyping done using commercially available arrays, with quality control separately per 
subcohort.33 Preparation for imputation was done using scripts, which are provided online 
(HRC or 1000G Imputation preparation and checking: 
http://www.well.ox.ac.uk/~wrayner/tools/ version 4.2.1). Imputation to the Haplotype 
Reference Consortium (HRC) was facilitated by the Michigan Imputation server.34 The server 
used SHAPEIT2 (v2.r790) to phase the data, and imputation to the HRC reference panel 
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(v1.0) was performed with Minimac 3. APOE genotype was determined using polymerase 
chain reaction on coded DNA samples for the initial cohort,32 and with a bi-allelic TaqMan 
assay (rs7412 and rs429358) in the two cohort expansions. In 2.8% of individuals in the 
original cohort, 0.5% in the first expansion, and 4.6% in the second expansion in whom APOE 
genotype was not directly determined, it was imputed using ‘best guess’ imputations (i.e. 
rounded dosages) of rs7412 (ε2 allele variant) and rs429358 (ε4 allele variant). Data of these 
imputations were concordant with direct genotyping for the ε2 and ε4 alleles in 98.9% and 
98.2% of samples, respectively. In total, APOE genotype was available for 11,375 (92.8%) 
participants. Parental family history of dementia was assessed during baseline interview, and 
available for 8793 (71.7%) participants. 
 
Genetic risk score (GRS) computation 
We included the 23 genetic variants that showed genome-wide significant evidence of 
association with Alzheimer’s disease to calculate a weighted GRS using reported effect 
estimates as weights.11,14-16 If multiple studies reported the effects of a variant, the effect 
estimate from the largest study was used. A summary of the included variants, applied 
weights, and corresponding discovery studies, is available in Chapter 5.3. We included only 
genetic variants associated with Alzheimer’s disease, as the number of participants with 
other types of dementia for which were genetic evidence is available was small: 51 
diagnoses of dementia in individuals with Parkinson’s disease, 14 participants with dementia 
with Lewy bodies, and 6 cases of frontotemporal dementia. The GRS was calculated as the 
sum of the products of SNP dosages of the 23 genetic variants (excluding APOE) and their 
respective weights. All 23 variants selected for the calculation of the GRS were well imputed 
(median imputation score (R2)> 0.993). The formula to calculate the GRS along with two 
examples is provided in Table 1. We split the population into a high, middle, and low risk 
category by tertiles of the GRS; the GRS in the lowest tertile was <-0.325671, and for the 
highest tertile >0.050230. To minimise survival bias, these boundaries were determined by 
those entering the study before age 60. 
 
Analysis  
First, we compared baseline characteristics across APOE genotypes with APOE ε33 as the 
reference genotype, and across tertiles of the GRS with the lowest tertile as the reference, 
using t-tests for continuous measures and χ-squared tests for categorical measures.  
 
Participants were censored at the date of dementia diagnosis, death, lost to follow-up, or 
the administrative censoring date, whichever came first. We calculated the cumulative 
incidence, henceforth risk, of all-cause dementia and Alzheimer’s disease up to the age of 
100 years using the ‘etmCIF’ function from the package ‘etm’ with R version 3.2.3.35-37 In 
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continuously under surveillance for dementia through electronic linkage of the study 
database with medical records from general practitioners and the regional institute for 
outpatient mental health care. This linkage allows detection of interval cases of dementia 
between centre visits. Available clinical neuroimaging was used when required for diagnosis 
of dementia subtype. A consensus panel led by a consultant neurologist established the final 
diagnosis according to standard criteria for dementia (DSM-III-R) and Alzheimer's disease 
(NINCDS–ADRDA).32 Follow-up for dementia until 1st January 2014 (original cohort), 1st 
January 2015 (first expansion), and 1st January 2013 (second expansion) was near-complete 
(92% of potential person-years).  
 
Genotyping and family history 
DNA was extracted from blood samples drawn by venepuncture at the baseline visit, and 
genotyping done using commercially available arrays, with quality control separately per 
subcohort.33 Preparation for imputation was done using scripts, which are provided online 
(HRC or 1000G Imputation preparation and checking: 
http://www.well.ox.ac.uk/~wrayner/tools/ version 4.2.1). Imputation to the Haplotype 
Reference Consortium (HRC) was facilitated by the Michigan Imputation server.34 The server 
used SHAPEIT2 (v2.r790) to phase the data, and imputation to the HRC reference panel 
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(v1.0) was performed with Minimac 3. APOE genotype was determined using polymerase 
chain reaction on coded DNA samples for the initial cohort,32 and with a bi-allelic TaqMan 
assay (rs7412 and rs429358) in the two cohort expansions. In 2.8% of individuals in the 
original cohort, 0.5% in the first expansion, and 4.6% in the second expansion in whom APOE 
genotype was not directly determined, it was imputed using ‘best guess’ imputations (i.e. 
rounded dosages) of rs7412 (ε2 allele variant) and rs429358 (ε4 allele variant). Data of these 
imputations were concordant with direct genotyping for the ε2 and ε4 alleles in 98.9% and 
98.2% of samples, respectively. In total, APOE genotype was available for 11,375 (92.8%) 
participants. Parental family history of dementia was assessed during baseline interview, and 
available for 8793 (71.7%) participants. 
 
Genetic risk score (GRS) computation 
We included the 23 genetic variants that showed genome-wide significant evidence of 
association with Alzheimer’s disease to calculate a weighted GRS using reported effect 
estimates as weights.11,14-16 If multiple studies reported the effects of a variant, the effect 
estimate from the largest study was used. A summary of the included variants, applied 
weights, and corresponding discovery studies, is available in Chapter 5.3. We included only 
genetic variants associated with Alzheimer’s disease, as the number of participants with 
other types of dementia for which were genetic evidence is available was small: 51 
diagnoses of dementia in individuals with Parkinson’s disease, 14 participants with dementia 
with Lewy bodies, and 6 cases of frontotemporal dementia. The GRS was calculated as the 
sum of the products of SNP dosages of the 23 genetic variants (excluding APOE) and their 
respective weights. All 23 variants selected for the calculation of the GRS were well imputed 
(median imputation score (R2)> 0.993). The formula to calculate the GRS along with two 
examples is provided in Table 1. We split the population into a high, middle, and low risk 
category by tertiles of the GRS; the GRS in the lowest tertile was <-0.325671, and for the 
highest tertile >0.050230. To minimise survival bias, these boundaries were determined by 
those entering the study before age 60. 
 
Analysis  
First, we compared baseline characteristics across APOE genotypes with APOE ε33 as the 
reference genotype, and across tertiles of the GRS with the lowest tertile as the reference, 
using t-tests for continuous measures and χ-squared tests for categorical measures.  
 
Participants were censored at the date of dementia diagnosis, death, lost to follow-up, or 
the administrative censoring date, whichever came first. We calculated the cumulative 
incidence, henceforth risk, of all-cause dementia and Alzheimer’s disease up to the age of 
100 years using the ‘etmCIF’ function from the package ‘etm’ with R version 3.2.3.35-37 In 
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short, the function provides age-specific estimates with 95% confidence intervals of the 
cumulative incidence from a modification of the Kaplan–Meier estimator,38 adapted for left 
truncation.39 We accounted for mortality as competing event in every analysis, and 
additionally for dementia due to other causes than Alzheimer’s disease as competing event 
in the estimations of Alzheimer’s disease risk. Risks curves were similar for APOE ε22 and 
APOE ε23 carriers, and for APOE ε24 and APOE ε34 carriers, and these were therefore 
pooled into APOE ε22/23 and APOE ε24/34 in subsequent analyses. We stratified analyses 
by 1) APOE genotype, 2) tertiles of the GRS, 3) the combination of APOE genotypes and GRS, 
and 4) the combination of APOE, GRS, and positive family history in at least one parent. We 
calculated the differences between the risk estimates by age 85 years as previously 
described.37 Interaction on the multiplicative scale between APOE genotype and the GRS, as 
well as the variant components of the GRS was tested using Cox proportional hazards and a 
Fine and Gray competing risk regression models, adjusting for main genetic effects, age at 
study entry, and sex.  
 
 
RESULTS 
 
Baseline characteristics of the 12,255 participants are presented in Table 2. During 133,123 
person-years of follow-up (median 11.0 years), 1,609 participants developed dementia, of 
whom 1,262 (78.4%) had Alzheimer’s disease, and 4,590 persons died of other causes. 
Overall, cumulative incidence (i.e. lifetime risk) of dementia by the age of 100 was 31.4% 
(95% confidence interval [CI] 30.1-32.8), whereas risk of Alzheimer’s disease was 25.0% 
(23.8-26.3). 
 
Effects of APOE genotype and common variants  
APOE genotype had a strong effect on risk of Alzheimer’s disease (Figure 1A). By age 85 
years, the risk for Alzheimer’s disease was 48.3% (95% CI 40.1-57.3) for homozygous APOE 
ε4 carriers, and 18.4% (16.5-20.4) for heterozygous ε4 carriers. Risks were substantially 
lower in individuals without an ε4 allele: 8.6% (7.7-9.6) for homozygous ε3 carriers, and 5.5% 
(4.1-7.4) for ε22/23 carriers. Absolute risks were naturally higher for all-cause dementia, but 
with similar relative differences with respect to APOE genotype (Figure 1B). Stratified by 
tertiles of the GRS, the risk of Alzheimer’s disease by age 85 was 8.1% higher in the highest 
tertile than in the lowest tertile (15.8% [14.1-17.6] versus 7.7% [6.5-9.1], P<0.0001) (Figure 
2A). These differences were again similar for all-cause dementia (Figure 2B). Precise risk 
estimates with confidence limits for dementia are presented in Table 3.  
 



   

C H A P T E R  5 . 4  

290 

As
si

gn
ed

-g
en

e 
Fo

rm
ul

a 
fo

r t
he

 c
al

cu
la

tio
n 

of
 th

e 
G

RS
 

Ex
am

pl
e 

1 
(lo

w
-r

is
k 

te
rt

ile
) 

Ex
am

pl
e 

2 
(h

ig
h-

ris
k 

te
rt

ile
) 

AB
CA

7 
N

um
be

r o
f G

 a
lle

le
s (

or
 d

os
ag

e)
 o

f r
s4

14
79

29
 *

 -0
.1

35
 

2*
-0

.1
35

 =
 

-0
.2

7 
1.

99
8*

-0
.1

35
 =

 
-0

.2
69

73
 

BI
N

1 
N

um
be

r o
f T

 a
lle

le
s (

or
 d

os
ag

e)
 o

f r
s6

73
38

39
 *

 0
.1

88
 

1*
0.

18
8 

= 
0.

18
8 

1*
0.

18
8 

= 
0.

18
8 

CA
SS

4 
N

um
be

r o
f C

 a
lle

le
s (

or
 d

os
ag

e)
 o

f r
s7

27
45

81
 *

 -0
.1

39
 

0*
-0

.1
39

 =
 

0 
0*

-0
.1

39
 =

 
0 

CD
2A

P 
N

um
be

r o
f G

 a
lle

le
s (

or
 d

os
ag

e)
 o

f r
s1

09
48

36
3 

* 
0.

09
8 

1*
0.

09
8 

= 
0.

09
8 

1*
0.

09
8 

= 
0.

09
8 

CE
LF

1 
N

um
be

r o
f C

 a
lle

le
s (

or
 d

os
ag

e)
 o

f r
s1

08
38

72
5 

* 
0.

07
5 

1*
0.

07
5 

= 
0.

07
5 

0*
0.

07
5 

= 
0 

CL
U

 
N

um
be

r o
f T

 a
lle

le
s (

or
 d

os
ag

e)
 o

f r
s9

33
18

96
 *

 0
.1

46
 

0*
0.

14
6 

= 
0 

2*
0.

14
6 

= 
0.

29
2 

CR
1 

N
um

be
r o

f G
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s6
65

64
01

 *
 -0

.1
57

 
2*

-0
.1

57
 =

 
-0

.3
14

 
1.

00
2*

-0
.1

57
 =

 
-0

.1
57

31
4 

EC
HD

C3
 

N
um

be
r o

f G
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s7
92

07
21

 *
 -0

.0
67

 
2*

-0
.0

67
 =

 
-0

.1
34

 
1*

-0
.0

67
 =

 
-0

.0
67

 

EP
HA

1 
N

um
be

r o
f A

 a
lle

le
s (

or
 d

os
ag

e)
 o

f r
s1

17
71

14
5 

* 
-0

.1
02

 
1*

-0
.1

02
 =

 
-0

.1
02

 
0*

-0
.1

02
 =

 
0 

FE
RM

T2
 

N
um

be
r o

f C
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s1
71

25
94

4 
* 

0.
12

2 
0*

0.
12

2 
= 

0 
0*

0.
12

2 
= 

0 

HL
A-

DR
B1

/5
 

N
um

be
r o

f A
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s1
11

41
82

23
 *

 -0
.1

08
 

1.
46

9*
-0

.1
08

 =
 

-0
.1

58
65

2 
1.

54
4*

-0
.1

08
 =

 
-0

.1
66

75
2 

HS
3S

T1
 

N
um

be
r o

f G
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s1
31

13
69

7 
* 

-0
.0

67
 

2*
-0

.0
67

 =
 

-0
.1

34
 

0*
-0

.0
67

 =
 

0 

IN
PP

5D
 

N
um

be
r o

f T
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s3
53

49
66

9 
* 

0.
06

6 
0.

00
2*

0.
06

6 
= 

0.
00

01
32

 
1*

0.
06

6 
= 

0.
06

6 

KA
N

SL
1 

N
um

be
r o

f G
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s1
18

17
29

52
 *

 -0
.1

51
 

0.
73

3*
-0

.1
51

 =
 

-0
.1

10
68

3 
0.

04
1*

-0
.1

51
 =

 
-0

.0
06

19
1 

M
EF

2C
 

N
um

be
r o

f A
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s1
90

98
2 

* 
0.

08
 

1.
99

7*
0.

08
 =

 
0.

15
97

6 
1.

00
7*

0.
08

 =
 

0.
08

05
6 

M
S4

A6
A 

N
um

be
r o

f G
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s9
83

39
2 

* 
-0

.1
08

 
0.

00
1*

-0
.1

08
 =

 
-0

.0
00

10
8 

1*
-0

.1
08

 =
 

-0
.1

08
 

N
M

E8
 

N
um

be
r o

f G
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s2
71

80
58

 *
 -0

.0
7 

1*
-0

.0
7 

= 
-0

.0
7 

0*
-0

.0
7 

= 
0 

PI
CA

LM
 

N
um

be
r o

f G
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s1
07

92
83

2 
* 

0.
13

 
1*

0.
13

 =
 

0.
13

 
2*

0.
13

 =
 

0.
26

 

PT
K2

B 
N

um
be

r o
f C

 a
lle

le
s (

or
 d

os
ag

e)
 o

f r
s2

88
34

97
0 

* 
0.

09
6 

1*
0.

09
6 

= 
0.

09
6 

1.
99

9*
0.

09
6 

= 
0.

19
19

04
 

SL
C2

4A
4-

RI
N

3 
N

um
be

r o
f T

 a
lle

le
s (

or
 d

os
ag

e)
 o

f r
s1

04
98

63
3 

* 
-0

.1
04

 
2*

-0
.1

04
 =

 
-0

.2
08

 
0*

-0
.1

04
 =

 
0 

SO
RL

1 
N

um
be

r o
f C

 a
lle

le
s (

or
 d

os
ag

e)
 o

f r
s1

12
18

34
3 

* 
-0

.2
7 

0*
-0

.2
7 

= 
0 

0*
-0

.2
7 

= 
0 

TR
EM

2 
N

um
be

r o
f T

 a
lle

le
s (

or
 d

os
ag

e)
 o

f r
s7

59
32

62
8 

* 
0.

88
9 

0*
0.

88
9 

= 
0 

0*
0.

88
9 

= 
0 

ZC
W

PW
1 

N
um

be
r o

f T
 a

lle
le

s (
or

 d
os

ag
e)

 o
f r

s1
47

66
79

 *
 0

.0
78

 
0.

00
2*

0.
07

8 
= 

0.
00

01
56

 
1.

99
9*

0.
07

8 
= 

0.
15

59
22

 

G
en

et
ic

 ri
sk

 sc
or

e 
(s

um
 o

f t
he

 a
bo

ve
) 

-0
.7

54
39

5 
0.

55
73

99
 

Ta
bl

e 
1.

 G
en

et
ic

 ri
sk

 sc
or

e 
co

m
pu

ta
tio

n.
 F

or
m

ul
as

 fo
r c

al
cu

la
tio

n 
ar

e 
ac

co
m

pa
ni

ed
 b

y 
tw

o 
ex

am
pl

es
 fr

om
 th

e 
Ro

tt
er

da
m

 S
tu

dy
. 

C O M M O N  G E N E T I C  V A R I A N T S  

291 
 

short, the function provides age-specific estimates with 95% confidence intervals of the 
cumulative incidence from a modification of the Kaplan–Meier estimator,38 adapted for left 
truncation.39 We accounted for mortality as competing event in every analysis, and 
additionally for dementia due to other causes than Alzheimer’s disease as competing event 
in the estimations of Alzheimer’s disease risk. Risks curves were similar for APOE ε22 and 
APOE ε23 carriers, and for APOE ε24 and APOE ε34 carriers, and these were therefore 
pooled into APOE ε22/23 and APOE ε24/34 in subsequent analyses. We stratified analyses 
by 1) APOE genotype, 2) tertiles of the GRS, 3) the combination of APOE genotypes and GRS, 
and 4) the combination of APOE, GRS, and positive family history in at least one parent. We 
calculated the differences between the risk estimates by age 85 years as previously 
described.37 Interaction on the multiplicative scale between APOE genotype and the GRS, as 
well as the variant components of the GRS was tested using Cox proportional hazards and a 
Fine and Gray competing risk regression models, adjusting for main genetic effects, age at 
study entry, and sex.  
 
 
RESULTS 
 
Baseline characteristics of the 12,255 participants are presented in Table 2. During 133,123 
person-years of follow-up (median 11.0 years), 1,609 participants developed dementia, of 
whom 1,262 (78.4%) had Alzheimer’s disease, and 4,590 persons died of other causes. 
Overall, cumulative incidence (i.e. lifetime risk) of dementia by the age of 100 was 31.4% 
(95% confidence interval [CI] 30.1-32.8), whereas risk of Alzheimer’s disease was 25.0% 
(23.8-26.3). 
 
Effects of APOE genotype and common variants  
APOE genotype had a strong effect on risk of Alzheimer’s disease (Figure 1A). By age 85 
years, the risk for Alzheimer’s disease was 48.3% (95% CI 40.1-57.3) for homozygous APOE 
ε4 carriers, and 18.4% (16.5-20.4) for heterozygous ε4 carriers. Risks were substantially 
lower in individuals without an ε4 allele: 8.6% (7.7-9.6) for homozygous ε3 carriers, and 5.5% 
(4.1-7.4) for ε22/23 carriers. Absolute risks were naturally higher for all-cause dementia, but 
with similar relative differences with respect to APOE genotype (Figure 1B). Stratified by 
tertiles of the GRS, the risk of Alzheimer’s disease by age 85 was 8.1% higher in the highest 
tertile than in the lowest tertile (15.8% [14.1-17.6] versus 7.7% [6.5-9.1], P<0.0001) (Figure 
2A). These differences were again similar for all-cause dementia (Figure 2B). Precise risk 
estimates with confidence limits for dementia are presented in Table 3.  
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LEFT: Figure 1. Risk curves of Alzheimer’s disease (A) and dementia (B) by APOE genotypes. The risk curves 
show the cumulative incidence of Alzheimer’s disease (A) and dementia (B). The shaded areas show the upper 
and lower 95% confidence limits of the corresponding cumulative incidence curve. The number of individuals at 
risk by age is shown under the graph. 
 
RIGHT: Figure 2. Risk curves of Alzheimer’s disease (A) and dementia (B) by tertiles of the GRS. The risk 
curves show the cumulative incidence per 100 individuals of Alzheimer’s disease (A) and dementia (B). The 
shaded areas show the upper and lower 95% confidence limits of the corresponding cumulative incidence 
curve. The number of individuals at risk by age is shown under the graph. 
 
 
Effect of common variants on risk by APOE genotype 
Risk estimates of dementia and Alzheimer’s disease stratified by both APOE and the GRS 
groups are depicted in Table 3. A higher GRS was associated with increased risk within each 
of the separate APOE genotypes, but effects were largest and seen earliest in life for APOE 
ε4 carriers. This interaction between APOE and the GRS was significant for both risk of 
dementia (P=0.04), and Alzheimer’s disease (P=0.03), and appeared attributable to various 
components of the GRS rather than one single variant (Table 4).  
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Assigned Gene Rs-id Pinteraction  

ABCA7 rs4147929 0.83  
BIN1 rs6733839 0.83  

CASS4 rs7274581 0.16  
CD2AP rs10948363 0.64  
CELF1 rs10838725 0.37  
CLU rs9331896 0.08  

CR1 rs6656401 0.09  

ECHDC3 rs7920721 0.99  

EPHA1 rs11771145 0.94  
FERMT2 rs17125944 0.11  

HLA-DRB1/5 rs111418223 0.01  
HS3ST1 rs13113697 0.07  

INPP5D rs35349669 0.91  

KANSL1 rs118172952 0.73  

MEF2C rs190982 0.18  
MS4A6A rs983392 0.44  

NME8 rs2718058 0.41  

PICALM rs10792832 0.74  

PTK2B rs28834970 0.67  
SLC24A4-RIN3 rs10498633 0.43  

SORL1 rs11218343 0.80  

TREM2 rs75932628 0.74  
ZCWPW1 rs1476679 0.43  

Table 4. Interaction of single variants in the GRS with APOE genotypes. 
 

By age 85, the risk of Alzheimer’s disease for homozygous ε4 carriers with a high GRS was 
62.7% (47.2-78.2) compared to 35.7% (22.6-53.2) with a low GRS, corresponding to a risk 
difference of 27.0% (P=0.009). For heterozygous ε4 carriers, the risk difference by this age 
was 13.8% (P<0.0001), decreasing to 6.1% for homozygous APOE ε3 carriers (P<0.0001), and 
0.7% for carriers of the ε2 allele (P=0.35). A similar trend was seen for dementia, with risk 
differences between a low and a high GRS by age 85 of 37.2% for homozygous APOE ε4 
carriers (P=0.0002), lowering to 15.6% in heterozygous ε4 (P<0.0001), 6.1% in homozygous 
ε3 (P<0.0001), and 2.0% for ε2 carriers (P=0.22).  
 
APOE ε2 carriers with a low GRS had the lowest risk by age 85 years of dementia (7.2% [4.5-
11.5]), as well as Alzheimer’s disease (4.1% [2.1-7.7]). The GRS did not discriminate much 
within the group of ε2 carriers before age 85, but was related to onset of dementia in the 
oldest old (Table 3). Homozygous carriers of the ε4 allele with a high GRS were at highest 
risk, reaching 77.5% (63.1-89.3) for dementia, and 62.7% (47.2-78.2) for Alzheimer’s disease. 
Thus, between these genetic risk extremes there was 70.3% risk difference for dementia by 
age 85 (P<0.0001), and a 58.6% risk difference for Alzheimer’s disease (P<0.0001).  
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carriers (P=0.0002), lowering to 15.6% in heterozygous ε4 (P<0.0001), 6.1% in homozygous 
ε3 (P<0.0001), and 2.0% for ε2 carriers (P=0.22).  
 
APOE ε2 carriers with a low GRS had the lowest risk by age 85 years of dementia (7.2% [4.5-
11.5]), as well as Alzheimer’s disease (4.1% [2.1-7.7]). The GRS did not discriminate much 
within the group of ε2 carriers before age 85, but was related to onset of dementia in the 
oldest old (Table 3). Homozygous carriers of the ε4 allele with a high GRS were at highest 
risk, reaching 77.5% (63.1-89.3) for dementia, and 62.7% (47.2-78.2) for Alzheimer’s disease. 
Thus, between these genetic risk extremes there was 70.3% risk difference for dementia by 
age 85 (P<0.0001), and a 58.6% risk difference for Alzheimer’s disease (P<0.0001).  
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Figure 3 illustrates the risk of dementia and Alzheimer’s disease by age, APOE genotype and 
GRS, with increasing risk displayed in various colour gradients from green to red. This shows 
for example that homozygous APOE ε4 carriers with a high GRS attain 5% risk of dementia by 
age 64 (67 years for Alzheimer’s disease), and 12.5% risk by age 67 (71 years for Alzheimer’s 
disease). For comparison, APOE ε2 carriers with a low GRS attain 5% risk of dementia by age 
82 years (85 years for Alzheimer’s disease), and 12.5% by the age of 90 (100 years for 
Alzheimer’s disease). This translates into a difference in age at onset in individuals with the 
highest versus the lowest genetic risk of 18-23 years for dementia, and 18-29 years for 
Alzheimer’s disease. These differences in age at onset within APOE genotypes can also be 
appreciated in Figure 3. In homozygous APOE ε4 carriers a 40% risk of dementia is attained 9 
years earlier by individuals with a high GRS (i.e. at 75 years) compared to those with a low 
GRS (i.e. 84 years). This was again similar for Alzheimer’s disease (Figure 3). 
 
Parental family history  
Incorporation of parental family history of dementia further discriminated individuals at high 
risk from those at lower risk (Table 5). Estimates for all-cause dementia by age 85 went up to 
91.0% (66.9-99.4) in the highest risk group (APOE ε44, high-risk GRS, and positive family 
history), increasing the absolute difference with the lowest risk group (APOE ε22/23, low-risk 
GRS, and no affected parent) to 83.8%. The APOE and GRS stratified risk estimates for all-
cause dementia with and without a parental family history of dementia are shown in Table 5. 
 
 
DISCUSSION 
 
In this large population-based study, a GRS of common genetic variants modifies the risk and 
age at onset of dementia and Alzheimer’s disease above and beyond the effect of APOE. The 
risk modification by the joint effect of common variants is most pronounced in APOE ε44 
carriers in whom there is a difference of up to 10 years in age at onset between those with a 
low and high GRS. At the low-risk end of the spectrum, the same genetic variants in 
combination with the APOE ε22/23 genotypes identify a subgroup in the population that is 
at very low risk of dementia, with average age at onset of dementia nearly two decades later 
than individuals with the highest genetic risk. These differences can be further enhanced by 
incorporating parental history of dementia, implying future genetic discoveries may further 
benefit risk stratification. 
 
The identification of subgroups at high genetic risk of dementia with an earlier onset in the 
general population has important implications for precision medicine. Pathological changes 
related to Alzheimer’s disease begin to develop decades before the earliest clinical
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GRS, with increasing risk displayed in various colour gradients from green to red. This shows 
for example that homozygous APOE ε4 carriers with a high GRS attain 5% risk of dementia by 
age 64 (67 years for Alzheimer’s disease), and 12.5% risk by age 67 (71 years for Alzheimer’s 
disease). For comparison, APOE ε2 carriers with a low GRS attain 5% risk of dementia by age 
82 years (85 years for Alzheimer’s disease), and 12.5% by the age of 90 (100 years for 
Alzheimer’s disease). This translates into a difference in age at onset in individuals with the 
highest versus the lowest genetic risk of 18-23 years for dementia, and 18-29 years for 
Alzheimer’s disease. These differences in age at onset within APOE genotypes can also be 
appreciated in Figure 3. In homozygous APOE ε4 carriers a 40% risk of dementia is attained 9 
years earlier by individuals with a high GRS (i.e. at 75 years) compared to those with a low 
GRS (i.e. 84 years). This was again similar for Alzheimer’s disease (Figure 3). 
 
Parental family history  
Incorporation of parental family history of dementia further discriminated individuals at high 
risk from those at lower risk (Table 5). Estimates for all-cause dementia by age 85 went up to 
91.0% (66.9-99.4) in the highest risk group (APOE ε44, high-risk GRS, and positive family 
history), increasing the absolute difference with the lowest risk group (APOE ε22/23, low-risk 
GRS, and no affected parent) to 83.8%. The APOE and GRS stratified risk estimates for all-
cause dementia with and without a parental family history of dementia are shown in Table 5. 
 
 
DISCUSSION 
 
In this large population-based study, a GRS of common genetic variants modifies the risk and 
age at onset of dementia and Alzheimer’s disease above and beyond the effect of APOE. The 
risk modification by the joint effect of common variants is most pronounced in APOE ε44 
carriers in whom there is a difference of up to 10 years in age at onset between those with a 
low and high GRS. At the low-risk end of the spectrum, the same genetic variants in 
combination with the APOE ε22/23 genotypes identify a subgroup in the population that is 
at very low risk of dementia, with average age at onset of dementia nearly two decades later 
than individuals with the highest genetic risk. These differences can be further enhanced by 
incorporating parental history of dementia, implying future genetic discoveries may further 
benefit risk stratification. 
 
The identification of subgroups at high genetic risk of dementia with an earlier onset in the 
general population has important implications for precision medicine. Pathological changes 
related to Alzheimer’s disease begin to develop decades before the earliest clinical
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symptoms.8 Preventive interventions therefore increasingly target asymptomatic individuals 
at younger age, but must preferentially selected individuals at high (genetic) risk of cognitive 
decline to render these costly trials feasible.6,7,44  Selection of only high risk subgroups 
decreases the necessary sample size, and duration of trails,6,24 although this should be 
weighed against the potential loss of generalisability of trial results. On the other end of the 
spectrum, individuals at extremely low risk of dementia might not want to risk trial exposure 
to treatment (side-effects). These persons are, however, of particular interest for inclusion in 
observational studies that aim to identify protective factors, or identify rare high-risk 
variants in individuals who do develop dementia against the odds.  
 
The current study corroborates reports of variation in relative risks of common genetic 
variants by APOE genotype,21,22,45 and adds that these differential effects extend to absolute 
risk and age at onset. Various biological pathways that have been implicated in Alzheimer’s 
disease could be accountable for this genetic interaction.46 Of suggested pathways involving 
endocytosis, haemostasis, cholesterol transport, hematopoietic cell lineage, protein folding, 
clathrin complexes, immune response, and protein ubiquitination,46 APOE is a part of at least 
four.46,47 Methodologically, a higher degree of misdiagnosis of Alzheimer’s disease in ε4 non-
carriers could also contribute to this interaction, but given the similar pattern for all-cause 
dementia, this seems less likely.  
 
The overall estimates of the cumulative incidence of dementia and Alzheimer’s disease in 
this study,28,41 and the APOE-stratified risks by age 85 are comparable to previous reports 
that also accounted for competing risk.41 The very similar patterns of risk curves for all-cause 
dementia and Alzheimer’s disease were to be expected in view of the large share of 
dementia diagnoses comprised of Alzheimer’s disease, but may also in part reflect effects of 
APOE and other genetic variants on other types of dementia and stroke.47-50 Prior studies 
have suggested only marginal improvements of a GRS of common variants on discrimination 
between patients with Alzheimer’s disease and controls,21-23,25 but along with another recent 
study,24 we show that effects are substantial for prospectively determined risk and age at 
onset. Although discrimination of the GRS may improve further by including increasing 
numbers of variants that have not been replicated, reported improvements in discrimination 
of such an approach have been marginal,23 likely not outweighing additional costs. 
 
Although we believe our results are valid, some limitations warrant mentioning. We 
estimated cumulative incidences up to a high age, including relatively many of the oldest old 
(e.g. 1,161 participants at the age of 90), but this could not prevent that stratification by 
APOE and the GRS tertiles left some subgroups with very small numbers at high age, 
rendering risk estimates less precise. Second, as the majority of Rotterdam Study 
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symptoms.8 Preventive interventions therefore increasingly target asymptomatic individuals 
at younger age, but must preferentially selected individuals at high (genetic) risk of cognitive 
decline to render these costly trials feasible.6,7,44  Selection of only high risk subgroups 
decreases the necessary sample size, and duration of trails,6,24 although this should be 
weighed against the potential loss of generalisability of trial results. On the other end of the 
spectrum, individuals at extremely low risk of dementia might not want to risk trial exposure 
to treatment (side-effects). These persons are, however, of particular interest for inclusion in 
observational studies that aim to identify protective factors, or identify rare high-risk 
variants in individuals who do develop dementia against the odds.  
 
The current study corroborates reports of variation in relative risks of common genetic 
variants by APOE genotype,21,22,45 and adds that these differential effects extend to absolute 
risk and age at onset. Various biological pathways that have been implicated in Alzheimer’s 
disease could be accountable for this genetic interaction.46 Of suggested pathways involving 
endocytosis, haemostasis, cholesterol transport, hematopoietic cell lineage, protein folding, 
clathrin complexes, immune response, and protein ubiquitination,46 APOE is a part of at least 
four.46,47 Methodologically, a higher degree of misdiagnosis of Alzheimer’s disease in ε4 non-
carriers could also contribute to this interaction, but given the similar pattern for all-cause 
dementia, this seems less likely.  
 
The overall estimates of the cumulative incidence of dementia and Alzheimer’s disease in 
this study,28,41 and the APOE-stratified risks by age 85 are comparable to previous reports 
that also accounted for competing risk.41 The very similar patterns of risk curves for all-cause 
dementia and Alzheimer’s disease were to be expected in view of the large share of 
dementia diagnoses comprised of Alzheimer’s disease, but may also in part reflect effects of 
APOE and other genetic variants on other types of dementia and stroke.47-50 Prior studies 
have suggested only marginal improvements of a GRS of common variants on discrimination 
between patients with Alzheimer’s disease and controls,21-23,25 but along with another recent 
study,24 we show that effects are substantial for prospectively determined risk and age at 
onset. Although discrimination of the GRS may improve further by including increasing 
numbers of variants that have not been replicated, reported improvements in discrimination 
of such an approach have been marginal,23 likely not outweighing additional costs. 
 
Although we believe our results are valid, some limitations warrant mentioning. We 
estimated cumulative incidences up to a high age, including relatively many of the oldest old 
(e.g. 1,161 participants at the age of 90), but this could not prevent that stratification by 
APOE and the GRS tertiles left some subgroups with very small numbers at high age, 
rendering risk estimates less precise. Second, as the majority of Rotterdam Study 
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participants were native Dutch, results may not be fully applicable to other ethnicities. Third, 
refusal to participate in the study could have led to selection bias, most likely 
underestimating the absolute risk of dementia. Nevertheless, the initial response rate of the 
Rotterdam study is high (72%), compared to for example <10% in the UK Biobank, and the 
near-complete follow-up for dementia (92% of potential person-years) over prolonged 
follow-up of 26 years limits the impact of potential selection bias at baseline on absolute risk 
estimates. Fourth, family history of dementia provides more precise information for risk 
stratification if age at onset in relatives is taken into account,29 but this information was not 
available for most of the participants in this study.  
 
In conclusion, we show that the small effects of common genetic variants together 
significantly modify the risk of dementia, and determine a substantial part of the variability 
in age at onset. With the ever-expanding insight in the genetic make-up of Alzheimer’s 
disease, these estimates will gain further precision, and will therefore require periodic 
updates in the future. Until then, our findings contribute towards better risk prediction of 
dementia, and may be used to improve efficacy of clinical trials. 
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ABSTRACT 
 
APOE genotype is the most important genetic risk factor for dementia, and in particular 
Alzheimer’s disease, and variation in gene expression may be reflected by differences in 
serum levels of apolipoprotein E (apoE). ApoE levels have consequently been suggested as 
potential biomarker for dementia, but its long-term association with risk of dementia or 
Alzheimer’s disease is unknown. Between 1990 and 1993, we measured serum apoE by 
immunoassay in 1040 non-demented individuals (mean age 68 years; 59% women) from the 
population-based Rotterdam Study. We used Cox proportional hazard models to determine 
the risk of dementia and Alzheimer’s disease (until 2014) in relation to apoE, adjusting for 
age, sex, educational attainment, cardiovascular risk factors, and additionally APOE 
genotype, and assessed additional predictive value using the integrated discrimination 
improvement (IDI) index. Serum apoE was strongly associated to APOE genotype (P-
trend=1.0E-51, r2=0.21). In men, apoE tended to be lower at higher ages, whereas in women 
the opposite was observed (P-trend=0.08 and 0.02, respectively). During a median follow-up 
of 15.7 years, 220 participants developed dementia, of whom 180 had Alzheimer’s disease. 
Lower serum apoE was associated with an increased risk of dementia (HR [95%CI] per SD 
decrease: 1.32 [1.10-1.57]), and in particular Alzheimer’s disease (HR 1.51 [1.23-1.86]), 
which remained statistically significant for Alzheimer’s disease after additional adjustment 
for APOE genotype (HR 1.28 [1.00-1.62]). Associations were most profound in individuals 
heterozygous at the APOE locus (for all-cause dementia: HR 1.55 [1.25-1.90] versus 1.10 
[0.84-1.43] with homozygosity; P-value for interaction=0.08). Serum apoE marginally 
improved 20-year prediction of Alzheimer’s disease (IDI 0.007 [-0.002 to 0.023]), driven by a 
difference for heterozygous individuals (IDI 0.019 [0.0001 to 0.054]). In conclusion, serum 
apoE is associated with long-term risk of Alzheimer’s disease in the general population, 
independent of APOE genotype, and might contribute to risk stratification as an easily 
accessible biomarker for Alzheimer’s disease. 
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INTRODUCTION 
 
Worldwide, approximately 48 million people are living with dementia, and this number is 
projected to nearly triple till 2050.1,2 Although symptoms of dementia typically arise late in 
life, subclinical pathological changes in the brain occur up to decades before onset of 
symptoms.3 Early identification of individuals at high risk of dementia is therefore essential 
to prevent manifestation of the disease. A reliable biomarker could aid in timely application 
of preventive strategies, selecting participants for neuroprotective trials, and disease 
monitoring. Various cerebrospinal fluid biomarkers have been assessed for these purposes in 
clinical populations, but plasma biomarkers that would allow long-term risk stratification in 
the general population are lacking.3 

 
Apolipoprotein E genotype (APOE) is the major genetic risk factor for Alzheimer’s disease, 
increasing lifetime risk for ε4 carriers 3 to 12-fold.4 Various cross-sectional studies have 
shown that plasma levels of apolipoprotein E (apoE) are lower in patients with Alzheimer’s 
disease,5 and a recent Danish population-study found that lower levels of apoE are 
associated with increased risk of dementia and Alzheimer’s disease.6 However, median 
follow-up duration in the latter study was only four years, precluding any conclusion about 
long-term associations, which are most relevant for risk prediction. We aimed to determine 
the long-term association and predictive value of serum apoE for dementia and Alzheimer’s 
disease in a population-based study. 
 
 
METHODS 
 
Study population 
The current study was embedded within the population-based Rotterdam Study, details of 
which have been described previously.7 In brief, the initial study population consisted of 
7,983 individuals in the Ommoord district in Rotterdam, the Netherlands. Baseline 
examinations took place from 1990-1993. Of 7,152 participants who visited the research 
centre, we determined serum apoE in a random subset of 1,042 non-demented individuals. 
During the second follow-up visit from 1997-1999, measurements were repeated in a 
random subset of 338 of these individuals.  
 
Measurement of serum apoE and APOE genotype 
Blood samples were drawn by venipuncture from non-fasting subjects at baseline and from 
fasting subjects at follow-up, and samples were stored at -80°C. Serum apoE levels were 
measured by enzyme-linked immunosorbent assay (ELISA) at baseline, and plasma levels via 
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monitoring. Various cerebrospinal fluid biomarkers have been assessed for these purposes in 
clinical populations, but plasma biomarkers that would allow long-term risk stratification in 
the general population are lacking.3 

 
Apolipoprotein E genotype (APOE) is the major genetic risk factor for Alzheimer’s disease, 
increasing lifetime risk for ε4 carriers 3 to 12-fold.4 Various cross-sectional studies have 
shown that plasma levels of apolipoprotein E (apoE) are lower in patients with Alzheimer’s 
disease,5 and a recent Danish population-study found that lower levels of apoE are 
associated with increased risk of dementia and Alzheimer’s disease.6 However, median 
follow-up duration in the latter study was only four years, precluding any conclusion about 
long-term associations, which are most relevant for risk prediction. We aimed to determine 
the long-term association and predictive value of serum apoE for dementia and Alzheimer’s 
disease in a population-based study. 
 
 
METHODS 
 
Study population 
The current study was embedded within the population-based Rotterdam Study, details of 
which have been described previously.7 In brief, the initial study population consisted of 
7,983 individuals in the Ommoord district in Rotterdam, the Netherlands. Baseline 
examinations took place from 1990-1993. Of 7,152 participants who visited the research 
centre, we determined serum apoE in a random subset of 1,042 non-demented individuals. 
During the second follow-up visit from 1997-1999, measurements were repeated in a 
random subset of 338 of these individuals.  
 
Measurement of serum apoE and APOE genotype 
Blood samples were drawn by venipuncture from non-fasting subjects at baseline and from 
fasting subjects at follow-up, and samples were stored at -80°C. Serum apoE levels were 
measured by enzyme-linked immunosorbent assay (ELISA) at baseline, and plasma levels via 
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multiplex immunoassay on human multianalyte profiles (Myriad RBM Inc., Austin TX, USA; 
http://rbm.myriad.com) during follow-up. APOE genotype was determined using polymerase 
chain reaction on coded DNA samples, and classified into homozygous ε3 carriers, ε4 carriers 
(i.e. ε2/4, ε3/4, and ε4/4), and ε2 carriers (i.e. ε2/3 and ε2/2).  
 
Dementia screening and surveillance 
Participants were screened for dementia at baseline and subsequent centre visits using the 
Mini-Mental State Examination (MMSE) and the Geriatric Mental State Schedule (GMS) 
organic level.8 Those with MMSE<26 or GMS>0 underwent further investigation and 
informant interview including the Cambridge Examination for Mental Disorders of the 
Elderly. Additionally, the entire cohort was continuously under surveillance for dementia 
through electronic linkage of the study centre with medical records from general 
practitioners and the regional institute for outpatient mental healthcare. Available clinical 
neuroimaging data were reviewed when required for diagnosis of dementia subtype. A 
consensus panel headed by a consultant neurologist established the final diagnosis 
according to standard criteria for dementia (DSM-III-R), and Alzheimer’s disease (NINCDS-
ADRDA). Follow-up for dementia until 1st January 2014 was near-complete (93.9% of 
potential person years). 
 
Other measurements 
We assessed educational attainment, history of smoking (i.e. current, former, never) and use 
of antihypertensive or lipid-lowering medication at baseline by interview. Blood pressure 
was measured on the right arm with a random-zero sphygmomanometer. Non-fasting serum 
lipid levels were measured at baseline. Diabetes was defined as the use of blood glucose-
lowering medication at baseline or a random serum glucose level ≥11.1mmol/L. Body mass 
index was computed from measurements of height and weight (kg/m2). 
 
Analysis 
Analyses included all non-demented participants in whom serum apoE was determined. To 
guarantee model fit, serum apoE values of two individuals were recoded from +9 and +11 
standard deviations (SD) from the mean to the third highest measurement of +4.3 SD. 
Missing covariate data (maximum 11.4%) were imputed using fivefold multiple imputation. 
We first determined the correlation of apoE with age, sex, and APOE genotype. We then 
determined the risk of dementia and Alzheimer’s disease in relation to serum apoE levels, 
using Cox regression models. We tested for interaction on the multiplicative scale of apoE 
with age, sex, and heterozygosity at the APOE locus. We determined the predictive value of 
serum apoE over that of age, sex, and APOE genotype, expressed as changes in the area 
under the receiver operating characteristic curve (AUC) and integrated discrimination 
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improvement (IDI). In the subset of non-demented participants for whom we had a second 
consecutive apoE measurement, we determined the additive predictive value of this 
measurement for incident dementia, regarding the time in between first and second 
measurement as immortal person time. Analyses for prediction were done using R version 
3.2.2 (packages ‘risksetROC’ and ‘survIDINRI’). All other analyses were done using SPSS 
Statistics version 21.0 (IBM Corp, Armonk, NY, USA). Alpha (type 1 error) was set at 0.05. 
 
 

RESULTS 
 

Serum apoE was measured in 1,042 eligible individuals (mean±SD age 68.4±7.3, 59.3% 
women). Baseline characteristics of the study population are presented in Table 1. Serum 
apoE tended to lower with age in men, whereas in women the opposite was observed (P-
trend=0.08 and 0.02, respectively; Figure 1A). Serum apoE was highest for the ε2/ε2, and 
lowest for the ε4/ε4 genotype (P-trend=1.0*10-53; r2=0.21; Figure 1B). Of study participants, 
328 without dementia had apoE remeasured after on average 6.7 (SD 0.3) years. Correlation 
between the two subsequent measurements was moderate (Pearson’s r=0.62; Figure 1C). 
 

Characteristics Study population  

Age, years 68.4 ±7.3 
Women 618 (59.3) 
Educational attainment  
    Lower 690 (66.6) 
    Further 282 (27.2) 
    Higher 64 (6.2) 
Systolic blood pressure, mm Hg 136 ±20 
Diastolic blood pressure, mm Hg 71 ±11 
Antihypertensive medication  333 (32.0) 
Diabetes 67 (7.3) 
Serum cholesterol, mmol/L 6.7 ±1.2 
Serum high density lipoprotein, mmol/L 1.3 ±0.4 
Body mass index 26.6 ±3.8 
Lipid-lowering medication  25 (2.4) 
Smoking  
     Former 433 (43.0) 
     Current 216 (21.4) 
APOE genotype  
      ε2/ε2 8 (0.8) 
      ε2/ε3 155 (15.0) 
      ε2/ε4 23 (2.2) 
      ε3/ε3 580 (56.0) 
      ε3/ε4 253 (24.4) 
      ε4/ε4 17 (1.6) 
Serum apoE levels at baseline, mg/dL 2.86 ±1.49 
Serum apoE levels at follow-up, mg/dL 4.62 ±2.23 

Table 1. Baseline characteristics of the 1,042 participants. Values are presented as mean±standard deviation 
for continuous variables, and frequencies with percentages of total for nominal and ordinal variables.  
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improvement (IDI). In the subset of non-demented participants for whom we had a second 
consecutive apoE measurement, we determined the additive predictive value of this 
measurement for incident dementia, regarding the time in between first and second 
measurement as immortal person time. Analyses for prediction were done using R version 
3.2.2 (packages ‘risksetROC’ and ‘survIDINRI’). All other analyses were done using SPSS 
Statistics version 21.0 (IBM Corp, Armonk, NY, USA). Alpha (type 1 error) was set at 0.05. 
 
 

RESULTS 
 

Serum apoE was measured in 1,042 eligible individuals (mean±SD age 68.4±7.3, 59.3% 
women). Baseline characteristics of the study population are presented in Table 1. Serum 
apoE tended to lower with age in men, whereas in women the opposite was observed (P-
trend=0.08 and 0.02, respectively; Figure 1A). Serum apoE was highest for the ε2/ε2, and 
lowest for the ε4/ε4 genotype (P-trend=1.0*10-53; r2=0.21; Figure 1B). Of study participants, 
328 without dementia had apoE remeasured after on average 6.7 (SD 0.3) years. Correlation 
between the two subsequent measurements was moderate (Pearson’s r=0.62; Figure 1C). 
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    Higher 64 (6.2) 
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      ε3/ε4 253 (24.4) 
      ε4/ε4 17 (1.6) 
Serum apoE levels at baseline, mg/dL 2.86 ±1.49 
Serum apoE levels at follow-up, mg/dL 4.62 ±2.23 

Table 1. Baseline characteristics of the 1,042 participants. Values are presented as mean±standard deviation 
for continuous variables, and frequencies with percentages of total for nominal and ordinal variables.  
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During a median follow-up of 15.7 years (IQR 9.7-21.7) 220 individuals developed dementia, 
of whom 180 (81.8%) Alzheimer’s disease. Lower serum apoE at baseline was associated 
with an increased risk of dementia, and in particular Alzheimer’s disease (Table 1). These 
associations were attenuated, but remained statistically significant for Alzheimer’s disease, 
after additional adjustment for APOE genotype (Table 2). Associations of serum apoE with 
incident dementia were stronger in those with a heterozygous compared to a homozygous 
genotype at the APOE  locus (Table 3; P-value for interaction=0.08). There was no evidence 
of effect modification by age or sex (P≥0.73 for all-cause dementia). When stratifying 
analyses in 5-year time frames, risk estimates were similar throughout the study period 
(data not shown).  
 
Overall, compared to a model with age, sex, and APOE genotype, adding serum apoE tended 
to marginally improve 20-year prediction of Alzheimer’s disease (AUC 0.731 versus 0.726; IDI 
0.007 (95% CI -0.002 to 0.023), P=0.093), but not all-cause dementia (AUC 0.718 versus 
0.716; IDI 0.004 (-0.002 to 0.015), P=0.25). This was driven by an difference in individuals 
with a heterozygous APOE genotype (IDI 0.019 (0.0001 to 0.054), P=0.047; versus 0.001 (-
0.003 to 0.014), P=0.48, for homozygous APOE genotype). Incorporation of repeated apoE 
measurements after 6.7 years did not improve prediction (data not shown). 
 
 
 

 
Figure 1. Serum apoE levels by age, APOE genotype, and correlation of repeated measures. Baseline serum 
levels of apoE are presented age- and sex-stratified (A), by APOE genotype (B), and in relation to a second 
measurement with a different immunoassay 7 years later (C). Values are depicted as group means with 
corresponding standard errors (A and B) and scatter plot of individual data points with regression line (C). 
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During a median follow-up of 15.7 years (IQR 9.7-21.7) 220 individuals developed dementia, 
of whom 180 (81.8%) Alzheimer’s disease. Lower serum apoE at baseline was associated 
with an increased risk of dementia, and in particular Alzheimer’s disease (Table 1). These 
associations were attenuated, but remained statistically significant for Alzheimer’s disease, 
after additional adjustment for APOE genotype (Table 2). Associations of serum apoE with 
incident dementia were stronger in those with a heterozygous compared to a homozygous 
genotype at the APOE  locus (Table 3; P-value for interaction=0.08). There was no evidence 
of effect modification by age or sex (P≥0.73 for all-cause dementia). When stratifying 
analyses in 5-year time frames, risk estimates were similar throughout the study period 
(data not shown).  
 
Overall, compared to a model with age, sex, and APOE genotype, adding serum apoE tended 
to marginally improve 20-year prediction of Alzheimer’s disease (AUC 0.731 versus 0.726; IDI 
0.007 (95% CI -0.002 to 0.023), P=0.093), but not all-cause dementia (AUC 0.718 versus 
0.716; IDI 0.004 (-0.002 to 0.015), P=0.25). This was driven by an difference in individuals 
with a heterozygous APOE genotype (IDI 0.019 (0.0001 to 0.054), P=0.047; versus 0.001 (-
0.003 to 0.014), P=0.48, for homozygous APOE genotype). Incorporation of repeated apoE 
measurements after 6.7 years did not improve prediction (data not shown). 
 
 
 

 
Figure 1. Serum apoE levels by age, APOE genotype, and correlation of repeated measures. Baseline serum 
levels of apoE are presented age- and sex-stratified (A), by APOE genotype (B), and in relation to a second 
measurement with a different immunoassay 7 years later (C). Values are depicted as group means with 
corresponding standard errors (A and B) and scatter plot of individual data points with regression line (C). 
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DISCUSSION 
 
In this population-based study, serum apoE levels were associated with risk of Alzheimer’s 
disease, in particular in those with a heterozygous APOE genotype. Importantly, these 
associations were sustained up till 20 years of follow-up. Nevertheless, the added prognostic 
value of serum apoE over age, sex, education and APOE genotype was only marginal. 
 
The mean levels of apoE in our study ranged from 2.9 mg/dL measured in serum of non-
fasting subjects at baseline, to 4.6 mg/dL in plasma taken after fasting at follow-up nearly 7 
years later. Correlation between measurements was high (r=0.62), but the levels at follow-
up were thus higher on an absolute scale. Although this may be related to physiological 
processes, apoE levels are generally found somewhat higher in studies that measured 
plasma levels,5,6 which may be explained by interactions between analytes and clotting 
factors or other additives.5 Taking this into account, measured levels in our study were 
comparable to those obtained in other European and Asian studies,5,6 albeit higher values 
have been reported for North-American populations.5 To understand these differences and 
determine a reference standard for serum apoE levels, clear reporting of circumstances of 
blood withdrawal and methods of analyses in future studies is essential.  
 
Within the central nervous system, apoE is produced mainly by astrocytes and plays an 
essential role in cholesterol transport and β-amyloid clearance.9 In peripheral tissue, apoE is 
produced primarily by the liver and macrophages, and mediates lipoprotein metabolism.9 
ApoE in serum and CSF are thought to act independently, as animal work suggests only very 
limited transport of apoE (and other lipoproteins) across the blood-brain barrier in 
physiological conditions.10,11 Moreover, phenotypes of APOE may differ between CSF and 
plasma,12 and levels of apoE in CSF, but less so in serum, have been found to correlate with 
CSF levels of amyloid-β42.12-14 The association between serum apoE and Alzheimer’s disease, 
however, does suggest that peripheral apoE levels relate to pathology in the central nervous 
system. This is supported by similar correlations of APOE genotype with apoE levels in 
cerebrospinal fluid (CSF) and plasma in a large study,13 albeit only with plasma levels in a 
smaller sample.12 Upon direct comparison, correlation between serum and CSF apoE is low-
moderate,12-15 but possibly higher in patients with Alzheimer’s disease than in healthy 
controls.15 This might point to functional increases in response to pathology, or increased 
blood brain barrier permeability in patients with dementia,16 allowing circulating serum apoE 
(with a relatively small molecular weight of 34kDa) to cross the blood-brain barrier into the 
central nervous system, and vice versa. At any rate, the profound associations of serum 
ApoE with incident dementia in heterozygous APOE carriers in our study suggest that 
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variation in gene expression, as previously demonstrated with APOE heterozygosity,12 might 
be directly measured by peripheral levels of the gene product. 
 
Risk estimates in our study were virtually unaffected by adjustment for cardiovascular risk 
factors. Although a few studies have reported modification of the effect of cardiovascular 
risk factors on dementia by APOE genotype,17-19 no such studies are done with serum apoE, 
and our study was insufficiently powered to address this question. As associations of apoE 
with dementia remained substantial in effect size after accounting for APOE genotype, both 
may contribute in clinical risk stratification, especially in individuals heterozygous at the 
APOE  locus. Nevertheless, improvements in prediction were only marginal, underlining the 
need for a combination of risk markers for an accurate prediction of Alzheimer’s disease. 
Furthermore, although serum apoE seems to vary with age,6 a second measurement of apoE 
nearly 7 years apart did not contribute to risk prediction in a subsample of our study. As 
correlations between repeated measures were high, this may indicate that any 
(pathophysiological) changes in serum apoE levels occur early in life and subsequently 
change proportionally in the absence of disease modifying intervention. It is likely that a 
combination of various serum biomarkers will be needed to improve prediction of 
Alzheimer’s disease by blood tests, of which serum apoE might contribute in particular in 
those heterozygous at the APOE locus.  
 
Although we believe our findings are valid, there are certain limitations to take into account. 
First, our sample size was relatively limited, which renders this study underpowered for 
associations with all-cause dementia. Of note, risk estimates were similar to those reported 
previously in the Danish population.6 Second, as participants of the Rotterdam Study are 
predominantly Caucasian, our findings may not be applicable to other ethnicities. Third, the 
sensitivity of immunoassays for measuring different isoforms of apoE has been debated, as a 
previous mass spectrometry analysis did not show a correlation between serum apoE and 
Alzheimer’s disease.20 However, mass spectrometry reported correlations between apoE and 
genotype, as well as between apoE and sex, are in agreement with our findings.20 Moreover, 
the correlation between different types of immunoassays was high, and the measurement 
error due to insensitivity of immunoassays would only be expected to dilute effect 
estimates.  
 
In conclusion, serum apoE is independently associated with long-term risk of Alzheimer’s 
disease, and may hold potential as an easily accessible biomarker for early detection of 
individuals at high risk of developing Alzheimer’s disease. Nevertheless, excess predictive 
power in our study was limited, highlighting the need for development and concurrent use 
of additional serum biomarkers.  
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GENERAL  DISCUSSION  
 
The general discussion of the findings presented in this thesis marks the beginning of a 
journey’s end. At this end, in all its presumed complexity, this dissertation is to compose but 
a few grains of sand; its value to be determined solely by that of the sand castle it may partly 
shape, and most importantly, the castle’s ability to withstand the test of time. Let us hope 
that, like ancient Roman concrete, it will only gain in strength with repeated exposure to 
salty waves. In this final chapter, I will spout the first waves by interpreting the overall 
findings presented in this thesis in light of the larger body of published literature, addressing 
methodological vigour and imperfections, and outline the clinical and public health 
implications, as well as directions for future research. 
 
 
FINDINGS IN PERSPECTIVE 
 
During my medical studies, I was taught that the average systematic review of the literature 
yields about 1,500 citations for screening. Barely a decade later, the exponential growth in 
publications has boosted this number to some 4,000 published articles, exemplified by the 
findings described in Chapter 4.1. With nearly 200,000 articles about dementia in the 
PubMed library alone, one can find studies in support of virtually every possible hypothesis 
one can think of. It underlines the necessity, as well as the rising challenge of providing up-
to-date literature reviews on a wide range of topics, in particular for observational studies, 
which are generally beyond the scope of Sir Iain Chalmers’ 1993 Cochrane initiative. Given 
this abundance of available studies, the following disquisition should not be considered an 
exhaustive overview of the literature, as much as it is an overview of – subjectively – 
important studies in the field relating to this dissertation, combining convenient and (if such 
as thing exists) inconvenient truths on methodological merit more than anything else. 
 
Dementia in numbers 
One of the major criticisms about ‘epidemiological research’ is the impression that it sees 
merely noughts and ones where there is health and disease, failing to recognise the 
participants and patients behind the spreadsheet numbers. Somewhat ironically, one of the 
cornerstones of this dissertation consists of exactly that: numbers. The purpose, however, of 
presenting life expectancy, lifetime risks, and incidence rates is very much with the patient, 
or rather the wellbeing of the hitherto healthy individual, in mind. The message emerging 
from Chapter 2 is twofold. First, the burden of dementia is high, in particular among the very 
elderly, such that the effect of population ageing will surmount the decline in the age-
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specific incidence of dementia observed in Europe and North America. Second, and I cannot 
stress this point enough: the key to curbing the dementia epidemic lies in prevention.  
 
The first reports of a decline in the incidence of dementia came from Rochester (Minnesota, 
USA) and the Rotterdam Study,1,2 and were based on observations in the late 1980s and 
1990s. Yet, it took another five years with the publication of three further reports in 2016,3-5 
to spark cautious optimism regarding age-specific dementia risks in a larger audience. This 
development is somewhat reminiscent of the first report of a decline in mortality from 
coronary heart disease in 1964,6 which received little attention until further confirmation in 
1974 that indeed mortality rates had been declining since the early 1960s by about 20% 
within a decade.7 If the four decades of quarrel about the causes that followed are any sign 
of what awaits the dementia field, quite a debate is at hand. But perhaps we can learn a few 
lessons from history. The incidence trends described in this thesis are in this sense a step 
towards consensus, as they corroborate the findings of individual studies using a consistent 
methodology in a set calendar period, and affirm that these trends have benefitted men and 
women equally. Moreover, they may provide a framework for further investigation of 
potential causes of these trends. 
 
The main challenge in pinpointing causes of time trends is that there have been many 
concurrent changes, in public health, socioeconomic conditions, and medical treatment that 
may have contributed to changes in incidence rates (Figure 1). If history has thought us 
anything in this respect, it is the need for prolonged surveillance of disease and associated 
factors to enable modelling of trends and identification of causes.8 Here dementia research 
has somewhat of a head start. Studies initiated with heart disease in mind, such as the 
Cardiovascular Health Study and the Atherosclerosis Risk in Communities study, already 
provide the infrastructure for dementia surveillance. This is an enormous advantage 
compared to the 1970s, and an important argument for continuing funding for disease 
monitoring in the population. Second, statistical and computational advances these days 
allow for easier and better modelling of trends than before. These benefits will be much 
needed to address outstanding questions about causes of trends, and their consequences on 
the expected burden of disease.  
 
Despite the hopeful trends in dementia incidence described in this dissertation, there is still 
plenty of cause for concern. Recent contradictory reports from Japan,12 China,13 and 
Nigeria,14 suggest that declines in the incidence may have been limited to Europe and North 
America. These observations temper any optimism about disease burden, in particular as the 
largest increases in dementia prevalence are expected to occur in Asia and Africa.15 
However, they may also create possibilities for identifying causes of trends by contrasting  
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Figure 1. Identifying the causes of incidence trends. The left panel shows the initial thoughts about 
explanations for the trends in coronary heart disease, reproduced from Havlik and Feinleib,9 whereas the right 
panel shows potential explanations for the presented trends in dementia incidence. Note that reliable 
observations of dementia incidence have only been available since the second half of 20th century. While there 
is considerable overlap, treatment factors – later held accountable for 40% of the CHD trend (versus 51% for 
preventive factors)10,11 – are underrepresented for dementia, and education features prominently among the 
candidate preventive factors. On a historical note, the incidence trends described in this thesis were presented 
at a conference in Bethesda (Maryland, USA), dedicated to incidence trends in dementia, 39 years after the 
“Decline Conference” in Bethesda led to a consensus statement that incidence in heart disease mortality was in 
fact decreasing.9 

  
 
observations between populations. This will require additional and continuous high-quality 
surveillance data not only from understudied areas, both from ongoing studies alike. Similar 
to heart disease,8 we should caution that the rise of obesity,16 diabetes,17 and (on a global 
level) hypertension,18 do not reverse trends in dementia over the coming decades. As 
eloquently put by physician historians David Jones and Jeremy Greene: “Even if death and 
taxes remain inevitable, cancer, coronary artery disease, and dementia may not. But 
cautious optimism should not become complacency. If we can elucidate the changes that 
have contributed to these improvements, perhaps we can extend them. Today, the dramatic 
reductions in coronary artery disease-related mortality are under threat. The incipient 
improvements in dementia are presumably even more fragile. The burden of disease, ever 
malleable, can easily relapse.”19  
 
A second cause for concern is the ageing population, as exemplified for the Netherlands in 
Figure 2. The incidence of dementia increases exponentially with age, very similar across 
European and North American populations, and seemingly without any flattening beyond 
the 9th decade of life.20 The large, ongoing shift in population structure worldwide 
consequently leads to an increasing number of elderly individuals who are highly susceptible 
to dementia, but will the 20% decrease in incidence per decade, if sustained, be sufficient to  
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Figure 2. Change in population structure in the Netherlands from 1970 to 2030. Numbers are depicted in 
thousands, separately for men (blue) and women (pink). It is clearly visible how the traditional pyramid has 
eroded in a matter of decades. Data source: Central Bureau of Statistics in the Netherlands (CBS). 
 
 
limit the lifetime risks and life years spent with dementia? This answer to this question is 
essentially determined by whether increases in life expectancy can be counterbalanced by 
reduced or postponed morbidity. Until the second half of the 20th century, the predominant 
view was that prolonged life expectancy would inescapably lead to higher burden of disease 
(Figure 3). But in 1980, internist James Fries proposed that this is not necessarily the case, as 
long as the factors accounting for prolonged survival are also linked with infirmity at old 
age.21 This theory, designated the compression of morbidity would mean that longevity 
generally translates into a larger number of healthy life years (Figure 3). Fries later found 
support for his theory with a 35-year follow-up study among university alumni.22 More 
recently, a comparative study of the first and second Cognitive Function and Ageing Studies 
in the UK found that the number of years lived with low and to a lesser extent high 
dependency has increased between 1991 and 2011.23 However, these increases were 
substantially smaller than the concurrent increase in life expectancy in the UK,24 suggesting 
that Fries’ theory may hold at least in part. Nevertheless, causes of disability were not 
differentiated, and it may well be that in the absence of specific preventive interventions, 
the share of dementia in overall disability at old age in fact grows. Preventive efforts 
therefore remain indispensable, and as projected in this dissertation, are highly potent to 
reduce the burden of dementia by relatively minor postponements of its age at onset.  
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Figure 3. The burden of morbidity with changing life expectancy. The black triangle represents burden of 
disease across lifespan on the horizontal line. The arrows illustrate that prolonged life expectancy does not 
necessarily lead to increased burden of disease, as the same factors that extend lifespan also slow disease 
processes, and/or delay onset of disability. 
 

The large modelled effects of relatively minor postponements in dementia onset are in line 
with earlier projections of hypothetical interventions on prevalence and incidence of 
dementia.25 Such preventive efforts could be effective by either lowering the prevalence or 
impact of risk factors, or increasing cognitive reserve (Figure 4). Primary prevention (of 
shared risk factors for cardiovascular disease) is mostly directed at the former, whereas 
improvements in maternal health and education may be considered examples of the latter. 
Despite generally modest effect sizes at the individual level, these type of preventive 
intervention can greatly reduce the burden of disease at the population level.26 It therefore 
pains to see that disregard of preventive medicine is widespread in research, with very little 
resources being dedicated to prevention.27 Also for dementia, preventive interventions are 
likely to yield return of investment,28 albeit the long preclinical disease course will require 
perseverance for some years from initiation of such interventions. Admittedly, targets for 
prevention of dementia are sparse when limiting oneself to available evidence from 
randomised controlled trials.29 Following the failures of various dementia prevention trials in 
the late 1990s and early 2000s, trials have more frequently determined the effect of 
interventions on cognition as a more sensitive outcome measure than dementia. Although 
positive results have been subsequently seen in particular for trials assessing efficacy of 
physical activity and multi-domain interventions like the Scandinavian FINGER trial,29,30 the 
recent French Multi-domain Alzheimer Prevention Trial (MAPT– testing similar interventions 
plus omega-3 supplements)  found no significant benefit on cognitive decline over a 3-year 
period, and in an unselected population of elderly people  in the Netherlands (the preDIVA 
trial), multi-domain vascular care intervention did not significantly lower dementia 
incidence.31,32 These inconsistencies across trials employing closely aligned interventions 
emphasise that much work remains to be done to understand the specific pathways 
underlying their successes and failures. In contrast to intervention studies, there is ample 
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observational evidence for a role of modifiable risk factors in dementia, notably 
cardiovascular factors,33 including the kind that is generally precluded from interventional 
study (e.g. effects of mid-life hypertension on disease in the elderly). In the absence of 
conclusive trial evidence – and more importantly without any signs of potential adverse 
effects – observational studies should in my view weigh heavily in recommending tight risk 
factor control for the prevention of dementia, as well as stroke and coronary heart disease. I 
believe it is important to advocate these treatments, as dementia is still too often seen as an 
inescapable consequence of ageing, with low awareness of modifiable risk factors to prevent 
cognitive decline (Figure 5). Such a reemployment of existing strategies can and should go 
hand in hand with the pursuit of better understanding of pathophysiological mechanisms. 
 

 

 
Figure 4. The potential of prevention. Targets for dementia prevention can address baseline cognitive ability 
(i.e. shift the curve upward by increasing cognitive reserve), or reduce exposure to risk factors such as 
hypertension (i.e. adjust the slope while shifting the curve right). Consequently, the threshold for functional 
impairment consistent with dementia will be reached at later age, potentially beyond the individual’s lifespan. 
 

   
Figure 5. Perception of genetic influence and modifiable risk factors for Alzheimer’s disease. Results from a 
survey among 174 community-dwelling respondents in Utrecht, the Netherlands. Participants were confronted 
with the proposition ‘The risk of developing Alzheimer’s disease and cardiovascular disease is for the most part 
genetically determined’, and subsequently asked to identify risk factors for each disease among a list of the five 
presented risk factors and as many decoy answers (Ottink S, Van den Berg M & Wolters FJ, 2016). 
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Unravelling aetiology 
Felix qui potuit rerum cognoscere causas. – Virgil, Georgics Book II. 
Over the past decades, the field of dementia has moved from marking Alzheimer’s disease as 
a distinct disease entity, to acknowledging that Alzheimer’s disease is due to a multifaceted 
process that brings about pathophysiological changes in the brain along a seamless 
continuum, with its inception many years prior to clinical manifestation of the disease. 
Although Alzheimer’s disease has traditionally been linked to amyloid pathology, its 
prevalence is high among individuals without dementia,34 and correlations of amyloid with 
cognitive performance are generally low, both in humans and in purposefully designed 
mouse models.35,36 It is often underappreciated that the vast majority of patients with 
dementia, among which many with clinical Alzheimer’s disease, exhibit a multitude of 
pathologies upon autopsy.37 Vascular pathology, including atherosclerosis, arteriolosclerosis, 
(micro)infarcts, and (micro)haemorrhages, is about as present as amyloid and tau pathology 
in the elderly, and the presence of vascular pathology is a capital determinant of the 
probability of having dementia or cognitive impairment with a given amyloid burden.38 The 
recently reported association of late-life amyloid deposition in the brain with mid-life 
presence of cardiovascular risk factors in the population-based ARIC study further suggests 
that amyloid and vascular pathology should be seen in the context of another to understand 
the processes leading to clinical dementia.39 Even for post-stroke ‘vascular’ dementia,40 
prolonged increases in risk after the acute event seem to indicate extensive underlying 
cerebrovascular pathology beyond initial infarct location and size, possibly of shared 
aetiology,41 to explain a substantial part of this risk increase. Add to this the considerable 
overlap of amyloid and vascular pathology with α-synucleinopathies,42,43 and it is hard to 
define the three quarters of dementia cases in the population that classify as clinical 
Alzheimer’s disease as anything but pars pro toto for dementia. It illustrates above all the 
challenge to better disentangle phenotypes, which would be greatly facilitated by 
understanding of common and distinct pathways. In the following paragraphs, I will zoom in 
on the vascular component of dementia aetiology, guided by my study of cerebral 
haemodynamics and cardiovascular disease, and with special consideration for amyloid. 
 
The term autoregulation in the cerebral circulation was coined by Niels Lassen in 1959,44 
who reviewed an “overwhelming body of knowledge” of over 350 papers published since it 
became possible to assess cerebral blood flow using the inert gas method (measuring 
arterial-venous gas difference) or the indicator dilution method (measuring the venous 
dilution of an intra-arterially injected indicator) 15 years prior. Until the 1930s, it was 
generally believed that cerebral blood flow and volume varied passively and within strict 
limits, based on the doctrine by Scottish physician Alexander Monro (1733-1817) and 
surgeon George Kellie (1770-1829) that an intracranial volume equilibrium must at all times 

G E N E R A L  D I S C U S S I O N  
 

325 
 

be maintained by changes in either cerebrospinal fluid or blood volume.45 The possibility of a 
redistribution of blood within the cerebral vasculature, or by transference of cerebrospinal 
fluid was considered, but experimental data to support or refute the concept were 
unavailable till then. Fusing data from what was frankly a hodgepodge of studies, Lassen 
drew the no less accurate conclusion that cerebral blood flow remains constant over a wide 
range of blood pressure, and pinpointed in remarkable detail the autoregulatory 
mechanisms. An abstract view of his ‘autoregulatory curve’ is shown in Figure 6. Although 
the main focus of Lassen’s work is on physiological control of cerebral blood flow, with 
mechanisms outlined in Chapter 1, he does briefly address ‘various systemic disorders’, 
among which there is a case of orthostatic hypotension, mention of cardiac and pulmonary 
diseases, and even a small paragraph on anaemia and polycythemia which brings to mind 
Chapter 3.5: “In anaemia and polycythemia the cerebral blood flow is increased and 
decreased respectively. […] The cerebral oxygen uptake has been found to be reduced in 
anaemia, but normal in polycythemia.”44 Although studies about ‘organic dementia’, ‘senile 
psychosis’, and ‘cerebral arteriosclerosis’ are then still rare, and generally comprising no 
more than a dozen patients, the hypotheses discussed are as topical today as they have ever 
been. It renders it all the more surprising that is has taken more than five decades since to 
present the first longitudinal studies about cerebral blood flow and some on the main flow 
regulating mechanisms in relation to risk of dementia.  
 
 
 
 
 

 
Figure 6A. The autoregulatory curve displays the range of blood pressure in which cerebral blood flow is held 
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Unravelling aetiology 
Felix qui potuit rerum cognoscere causas. – Virgil, Georgics Book II. 
Over the past decades, the field of dementia has moved from marking Alzheimer’s disease as 
a distinct disease entity, to acknowledging that Alzheimer’s disease is due to a multifaceted 
process that brings about pathophysiological changes in the brain along a seamless 
continuum, with its inception many years prior to clinical manifestation of the disease. 
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pathologies upon autopsy.37 Vascular pathology, including atherosclerosis, arteriolosclerosis, 
(micro)infarcts, and (micro)haemorrhages, is about as present as amyloid and tau pathology 
in the elderly, and the presence of vascular pathology is a capital determinant of the 
probability of having dementia or cognitive impairment with a given amyloid burden.38 The 
recently reported association of late-life amyloid deposition in the brain with mid-life 
presence of cardiovascular risk factors in the population-based ARIC study further suggests 
that amyloid and vascular pathology should be seen in the context of another to understand 
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Alzheimer’s disease as anything but pars pro toto for dementia. It illustrates above all the 
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understanding of common and distinct pathways. In the following paragraphs, I will zoom in 
on the vascular component of dementia aetiology, guided by my study of cerebral 
haemodynamics and cardiovascular disease, and with special consideration for amyloid. 
 
The term autoregulation in the cerebral circulation was coined by Niels Lassen in 1959,44 
who reviewed an “overwhelming body of knowledge” of over 350 papers published since it 
became possible to assess cerebral blood flow using the inert gas method (measuring 
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limits, based on the doctrine by Scottish physician Alexander Monro (1733-1817) and 
surgeon George Kellie (1770-1829) that an intracranial volume equilibrium must at all times 
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be maintained by changes in either cerebrospinal fluid or blood volume.45 The possibility of a 
redistribution of blood within the cerebral vasculature, or by transference of cerebrospinal 
fluid was considered, but experimental data to support or refute the concept were 
unavailable till then. Fusing data from what was frankly a hodgepodge of studies, Lassen 
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mechanisms. An abstract view of his ‘autoregulatory curve’ is shown in Figure 6. Although 
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Chapter 3.5: “In anaemia and polycythemia the cerebral blood flow is increased and 
decreased respectively. […] The cerebral oxygen uptake has been found to be reduced in 
anaemia, but normal in polycythemia.”44 Although studies about ‘organic dementia’, ‘senile 
psychosis’, and ‘cerebral arteriosclerosis’ are then still rare, and generally comprising no 
more than a dozen patients, the hypotheses discussed are as topical today as they have ever 
been. It renders it all the more surprising that is has taken more than five decades since to 
present the first longitudinal studies about cerebral blood flow and some on the main flow 
regulating mechanisms in relation to risk of dementia.  
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Figure 6B. Schematic overview of changes in metabolism with declining cerebral perfusion pressure. Protein 
synthesis gradually reduces from about 50% of its capacity with cerebral blood flow of 55mL/100mL/min to 
complete suppression at 35mL/100mL/min. With further lowering of perfusion electroencephalographic 
amplitudes start to decrease, and at about 15-20mL/100mL/min ATP breakdown is soon followed by anoxic 
depolarisation of cell membranes and disappearance of evoked potentials.46 
 

Jointly, the studies described in Chapters 3 and 4 support a role of disturbed cerebral 
haemodynamics in the aetiology of dementia, whether brought on by cardiac (or autonomic) 
dysfunction, large artery disease, impaired neurovascular coupling, or disturbance in 
oxygenation. Until now, various studies had shown reduced cerebral blood flow in patients 
with Alzheimer’s disease and mild cognitive impairment,47-51 and correlations of amyloid-β 
with cerebral blood flow across the spectrum from cognitively healthy to demented,52 but 
none had determined whether low cerebral blood flow precedes cognitive impairment. 
Interestingly, concurrent to the reporting of Chapter 3.1, it was shown in the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) that increased cerebrovascular resistance 
exacerbates amyloidosis and predisposes to cognitive decline.53 The applied method for 
estimation of resistance renders these results very similar to the interaction between blood 
flow and arterial pressure in Chapter 3.1. The fact that the associations in ADNI were 
independent of positron emission tomography defined neuronal metabolism, along with the 
associations over prolonged follow-up presented in this thesis, strengthen the notion that 
changes in cerebral haemodynamics may contribute to development of dementia. 
Nevertheless, the follow-up periods, up to 10 years in Chapter 3.1, are arguably insufficient 
to rule out reverse causation completely.54 Whilst we await studies with repeated 
measurements of cerebral blood flow and cognition, extending over 10-15 years or even 
longer, alternative designs can teach us about the clinical and subclinical effects of changes 
in perfusion and transient or chronic hypoxia. A notable example of such a design is the 
multicentre Heart-Brain Study,55 a longitudinal study of 645 participants, including 175 
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patients with vascular cognitive impairment, 175 with carotid occlusive disease, 175 with 
heart failure, and 120 control subjects. Aiming to unravel the haemodynamic link between 
cardiac dysfunction, brain pathology, and cognitive decline, all study participants undergo 
standardised neuropsychological testing, blood sampling, cardiac, vascular and brain MRI, 
and (in subsets of participants) cerebrospinal fluid sampling in a multidisciplinary setting. 
Joint efforts like the Heart-Brain Study, systematically covering multiple organ systems in 
clinical setting, may well prove an important step forward to understanding the effects of 
hypoperfusion on the brain, and integrating clinical care for patients in an organ 
transcending approach. In the coming paragraphs, I shall further discuss from various angles 
the study of cerebral haemodynamics. Guided by the mechanisms described in Chapter 1 
and results presented in Chapter 3 and 4, I shall consecutively discuss flow regulatory 
mechanisms, disease related to reduced blood flow and oxygenation, and briefly touch upon 
effect modifying and mediating factors. 
 
There is a substantial body of evidence to support that flow-regulating mechanisms are 
impaired in patients with dementia. Cerebrovascular reactivity,56 as well as various measures 
of autonomic dysfunction are notoriously low in patients with dementia, in particular those 
with Parkinson’s disease dementia and dementia with Lewy bodies.57 Yet, it remains 
unknown at what time during the long preclinical disease course these functions become 
abnormal, as longitudinal studies about their change in time, in particular relating to 
dementia, are sparse. The results I describe in Chapter 3.3 are the first longitudinal evidence 
linking impaired vascular reactivity to development of dementia in the general population. 
Other studies reporting impaired vascular reactivity in healthy young APOE ε4 carriers,58 and 
asymptomatic individuals with hereditary cerebral amyloid angiopathy support a role of 
vascular reactivity early in the disease process.59 Patients with cerebral amyloid angiopathy 
are at high risk of cognitive decline,60 and cortical atrophy in individuals with hereditary 
disease has been shown mostly mediated by vascular dysfunction.61 With regard to 
autonomic dysfunction, three prospective cohort studies now show increased risks of 
dementia for orthostatic hypotension, with follow-up ranging from 6 to 25 years.62,63 Of 
other markers of autonomic dysfunction, day-to-day blood pressure variability has recently 
been implicated in dementia risk,64,65 while both blood pressure variability,66,67 and heart 
rate variability68 have been linked to cognitive decline. Various other markers, however, 
remain under-investigated. When Ewing and colleagues described their battery of 
cardiovascular autonomic function tests in the late 1970s,69 this offered some guidance to 
clinicians as to the value of different tests, and their change over time.70 The incorporated 
Valsalva manoeuvre, heart rate response to standing (30:15 ratio) and to deep breathing, 
and blood pressure response to standing and to sustained handgrip, are still often used, but 
few studies combine their measures, let alone other autonomic function tests, to assess 
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patients with vascular cognitive impairment, 175 with carotid occlusive disease, 175 with 
heart failure, and 120 control subjects. Aiming to unravel the haemodynamic link between 
cardiac dysfunction, brain pathology, and cognitive decline, all study participants undergo 
standardised neuropsychological testing, blood sampling, cardiac, vascular and brain MRI, 
and (in subsets of participants) cerebrospinal fluid sampling in a multidisciplinary setting. 
Joint efforts like the Heart-Brain Study, systematically covering multiple organ systems in 
clinical setting, may well prove an important step forward to understanding the effects of 
hypoperfusion on the brain, and integrating clinical care for patients in an organ 
transcending approach. In the coming paragraphs, I shall further discuss from various angles 
the study of cerebral haemodynamics. Guided by the mechanisms described in Chapter 1 
and results presented in Chapter 3 and 4, I shall consecutively discuss flow regulatory 
mechanisms, disease related to reduced blood flow and oxygenation, and briefly touch upon 
effect modifying and mediating factors. 
 
There is a substantial body of evidence to support that flow-regulating mechanisms are 
impaired in patients with dementia. Cerebrovascular reactivity,56 as well as various measures 
of autonomic dysfunction are notoriously low in patients with dementia, in particular those 
with Parkinson’s disease dementia and dementia with Lewy bodies.57 Yet, it remains 
unknown at what time during the long preclinical disease course these functions become 
abnormal, as longitudinal studies about their change in time, in particular relating to 
dementia, are sparse. The results I describe in Chapter 3.3 are the first longitudinal evidence 
linking impaired vascular reactivity to development of dementia in the general population. 
Other studies reporting impaired vascular reactivity in healthy young APOE ε4 carriers,58 and 
asymptomatic individuals with hereditary cerebral amyloid angiopathy support a role of 
vascular reactivity early in the disease process.59 Patients with cerebral amyloid angiopathy 
are at high risk of cognitive decline,60 and cortical atrophy in individuals with hereditary 
disease has been shown mostly mediated by vascular dysfunction.61 With regard to 
autonomic dysfunction, three prospective cohort studies now show increased risks of 
dementia for orthostatic hypotension, with follow-up ranging from 6 to 25 years.62,63 Of 
other markers of autonomic dysfunction, day-to-day blood pressure variability has recently 
been implicated in dementia risk,64,65 while both blood pressure variability,66,67 and heart 
rate variability68 have been linked to cognitive decline. Various other markers, however, 
remain under-investigated. When Ewing and colleagues described their battery of 
cardiovascular autonomic function tests in the late 1970s,69 this offered some guidance to 
clinicians as to the value of different tests, and their change over time.70 The incorporated 
Valsalva manoeuvre, heart rate response to standing (30:15 ratio) and to deep breathing, 
and blood pressure response to standing and to sustained handgrip, are still often used, but 
few studies combine their measures, let alone other autonomic function tests, to assess 
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their joint and independent association with cognition. Similarly, measures of autonomic 
function are rarely combined with vascular reactivity to capture autoregulatory capacity in 
its totality. Although the complexity of human physiology often precludes proper 
investigation of more than one determinant at a time, the complexity of human physiology 
at times warrants investigation of more than one determinant at a time. In my view, cerebral 
haemodynamics are an emblematic example of this. The interactions with cerebral small 
vessel disease in Chapter 3.1, and between orthostatic blood pressure and heart rate 
response in Chapter 3.2 lend support to the idea that consequences of faltering mechanisms 
often occur only when multiple links in the chain fail simultaneously. This is illustrated 
furthermore by the link between exhaustion of cerebrovascular reactivity in the presence of 
severe carotid artery stenosis,71 and subsequent risk of stroke and cognitive decline,72-74 
concomitant reduction of cerebral blood flow and vascular reactivity in patients with heart 
failure,75 and a particular tendency to syncope in patients with orthostatic hypotension who 
also have impaired vascular reactivity.76 Such findings also suggest that, even if decline in 
autonomic function is secondary to neurodegenerative pathology, it might still amplify 
pathology in the years preceding symptom onset, contributing to the generally exponential 
demise in trajectories of cognitive performance and brain imaging markers with ageing. 
 
Apart from the common physiological challenges on cerebral autoregulation, various 
diseases may put them particularly to the test. Pulmonary disease, although no topic of 
intimate consideration in this thesis, is increasingly implicated as a risk factor for cognitive 
impairment and dementia.81 Associations of chronic obstructive pulmonary disease and low 
arterial oxygen saturation with cerebral white matter hyperintensities are suggestive of 
hypoxic effects,82 in addition to joint effects of smoking, systematic inflammation, and 
vasculopathy.81 The theoretical importance of oxygenation (Figure 6) could furthermore be 
reflected in the associations of anaemia with risk of dementia, as described in Chapter 3.5. 
Although anaemia is notoriously associated with chronic disease, and further study into iron 
related mechanisms is certainly warranted,83 I have illustrated that only substantial 
confounding, of an unlikely magnitude, would suffice to explain the observed effects by bias. 
The effects of prevention and treatment of anaemia on brain health remains to be tested in 
intervention studies, but could potentially mean that oxygenation is readily amendable to a 
meaningful level. Meanwhile, studies of physiological effects could be refined with the 
combination of haemoglobin levels, arterial, and venous oxygen content (equalling the 
oxygen bound to haemoglobin plus what is dissolved in blood: 

), or oxygen extraction (estimated using Fick’s equation, 
). Unfortunately, arterial blood samples were 

not available in the studies yielded in this thesis, and oxygen saturation in only a small 
subset of participants.   
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Box 1. The inability to measure intracranial pressure non-invasively has made that much of 
current insight about brain perfusion originates from patients in need of invasive intracranial 
pressure monitoring. Several non-invasive measurement tools have been proposed to 
facilitate research about haemodynamic (patho)physiology, including the optic nerve sheet 
diameter (ONSD), blood flow velocities in the extracranial and intracranial ophthalmic artery 
(OA), and the combination of arterial pressure and pulsatility index on transcranial Doppler 
(TCD).77 Correlation with invasively measured intracranial pressure in published studies was 
generally highest for OA (r=0.74-0.81), followed by ONSD (r=0.41-0.74), and TCD (r=0.31-
0.94).77 The optic nerve, as part of the central nervous system, is surrounded by 
subarachnoid space, and the intra-orbital optic nerve sheet displays elasticity with changes 
in intracranial (and consequently cerebrospinal fluid) pressure.78 As the ONSD can be 
obtained from routinely acquired MR images, together with Dr. H.H. Adams, I used 
combined T1- and T2-weighted images (in the absence of a fat-suppressed T2-weighted 
sequence) to measure the ONSD (Figure 7). Because of natural variation in the optic nerve 
diameter (OND), correlating with sheet diameter, we measured both OND and ONSD, and 
calculated their ratio. Interrater agreement was moderate to good in the retrobulbar 
segment (at 3mm), for which we found a moderate negative correlation with age (Table 1). 
Further validation against invasively measured pressure, potentially using higher spatial 
resolution images,79,80 could determine whether such a tool provides a meaningful estimate 
of intracranial pressure in a population with relatively minor inter-individual variance.78  
 

 
  Figure 7. Measurement of OND and ONSD on MRI. Reproduced from Geeraerts et al.79 
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their joint and independent association with cognition. Similarly, measures of autonomic 
function are rarely combined with vascular reactivity to capture autoregulatory capacity in 
its totality. Although the complexity of human physiology often precludes proper 
investigation of more than one determinant at a time, the complexity of human physiology 
at times warrants investigation of more than one determinant at a time. In my view, cerebral 
haemodynamics are an emblematic example of this. The interactions with cerebral small 
vessel disease in Chapter 3.1, and between orthostatic blood pressure and heart rate 
response in Chapter 3.2 lend support to the idea that consequences of faltering mechanisms 
often occur only when multiple links in the chain fail simultaneously. This is illustrated 
furthermore by the link between exhaustion of cerebrovascular reactivity in the presence of 
severe carotid artery stenosis,71 and subsequent risk of stroke and cognitive decline,72-74 
concomitant reduction of cerebral blood flow and vascular reactivity in patients with heart 
failure,75 and a particular tendency to syncope in patients with orthostatic hypotension who 
also have impaired vascular reactivity.76 Such findings also suggest that, even if decline in 
autonomic function is secondary to neurodegenerative pathology, it might still amplify 
pathology in the years preceding symptom onset, contributing to the generally exponential 
demise in trajectories of cognitive performance and brain imaging markers with ageing. 
 
Apart from the common physiological challenges on cerebral autoregulation, various 
diseases may put them particularly to the test. Pulmonary disease, although no topic of 
intimate consideration in this thesis, is increasingly implicated as a risk factor for cognitive 
impairment and dementia.81 Associations of chronic obstructive pulmonary disease and low 
arterial oxygen saturation with cerebral white matter hyperintensities are suggestive of 
hypoxic effects,82 in addition to joint effects of smoking, systematic inflammation, and 
vasculopathy.81 The theoretical importance of oxygenation (Figure 6) could furthermore be 
reflected in the associations of anaemia with risk of dementia, as described in Chapter 3.5. 
Although anaemia is notoriously associated with chronic disease, and further study into iron 
related mechanisms is certainly warranted,83 I have illustrated that only substantial 
confounding, of an unlikely magnitude, would suffice to explain the observed effects by bias. 
The effects of prevention and treatment of anaemia on brain health remains to be tested in 
intervention studies, but could potentially mean that oxygenation is readily amendable to a 
meaningful level. Meanwhile, studies of physiological effects could be refined with the 
combination of haemoglobin levels, arterial, and venous oxygen content (equalling the 
oxygen bound to haemoglobin plus what is dissolved in blood: 

), or oxygen extraction (estimated using Fick’s equation, 
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Box 1. The inability to measure intracranial pressure non-invasively has made that much of 
current insight about brain perfusion originates from patients in need of invasive intracranial 
pressure monitoring. Several non-invasive measurement tools have been proposed to 
facilitate research about haemodynamic (patho)physiology, including the optic nerve sheet 
diameter (ONSD), blood flow velocities in the extracranial and intracranial ophthalmic artery 
(OA), and the combination of arterial pressure and pulsatility index on transcranial Doppler 
(TCD).77 Correlation with invasively measured intracranial pressure in published studies was 
generally highest for OA (r=0.74-0.81), followed by ONSD (r=0.41-0.74), and TCD (r=0.31-
0.94).77 The optic nerve, as part of the central nervous system, is surrounded by 
subarachnoid space, and the intra-orbital optic nerve sheet displays elasticity with changes 
in intracranial (and consequently cerebrospinal fluid) pressure.78 As the ONSD can be 
obtained from routinely acquired MR images, together with Dr. H.H. Adams, I used 
combined T1- and T2-weighted images (in the absence of a fat-suppressed T2-weighted 
sequence) to measure the ONSD (Figure 7). Because of natural variation in the optic nerve 
diameter (OND), correlating with sheet diameter, we measured both OND and ONSD, and 
calculated their ratio. Interrater agreement was moderate to good in the retrobulbar 
segment (at 3mm), for which we found a moderate negative correlation with age (Table 1). 
Further validation against invasively measured pressure, potentially using higher spatial 
resolution images,79,80 could determine whether such a tool provides a meaningful estimate 
of intracranial pressure in a population with relatively minor inter-individual variance.78  
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Box 1 (continued). 

 

Measurement Interrater agreement 
(intra-class correlation) 

Correlation with age 
(Pearson’s coefficient) 

3mm OND  0.77 n/a 
3mm ONSD 0.69 n/a 

3mm OND:ONSD ratio 0.58 0.31 (rater 1) 
0.30 (rater 2) 

10mm OND 0.58 n/a 
10mm ONSD 0.66 n/a 

10mm OND:ONSD ratio 0.36 0.12 (rater 1) 
0.27 (rater 2) 

Table 1. Interrater agreement for the OND and ONSD measurements, as well as the correlation of the 
OND:ONSD ratio with age (N=43). OND=optic nerve diameter; ONSD=optic nerve sheet diameter.  
 
 
Stenotic occlusive disease and heart failure I have already touched upon in the prior 
paragraph. A potential relation between carotid artery disease and apoplexy was 
acknowledged already by Hippocrates, and has been followed by a long history of surgical – 
and later endovascular – amendment of in particular the carotid artery bifurcation.84 The 
majority of these interventional studies have aimed at reducing the risk of thromboembolic 
sequelae, rather than restoring cerebral blood flow, and as such carotid artery 
desobstruction has been shown effective in reducing risk of recurrent stroke.85,86 It was 
already noted at an early stage, and published in a small study in 1976 under the auspicious 
title “The improvement of cognition and personality after carotid endarterectomy”, that 
cognitive performance may also benefit from carotid surgery.87 The ipsilateral brain tissue 
loss in Chapter 2.5 provides further evidence for a role of stenosis in neurodegeneration, 
along with numerous recent studies – albeit non-randomised and of varying methodological 
rigour – showing improvement in cognitive performance following carotid artery 
desobstruction, whether by stenting or endarterectomy, and for symptomatic as well as 
asymptomatic stenosis.88-93 In the absence of randomised controlled trials, these should be 
no basis for routine intervention, but they support aetiological involvement of 
haemodynamically significant stenosis of the brain supplying arteries, and advocate 
incorporation of cognitive endpoints in intervention trials of carotid stenosis for stroke 
prevention in the statin era. Whilst for stroke prevention such interventions depend on the 
symptomatology of the stenotic disease, the prolonged exposure contributing to 
neurodegeneration and cognitive decline may well pass unnoticed for a long time, and fit a 
different paradigm. It thereby remains to be determined whether such associations are the 
results of (micro)thrombi, and/or cerebral blood flow reduction. The latter may be most 
visible in the watershed areas on the border of arterial territories, which appear vulnerable 
to micro-infarction.94,95 Cortical microinfarcts have recently emerged as a risk factor for 
cognitive impairment,96 and although the vast majority currently remains under the 
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detection limit of in vivo clinical imaging,97 invisible on 1.5 tesla MRI applied in the 
Rotterdam Study, it is interesting to speculate about their role in the predominantly frontal –
possibly watershed– differences in interhemispheric volumes in Chapter 3.5, and potential 
mediation of associations of dementia with symptomatic and subclinical heart disease.98  
 
Heart failure can be caused by different diseases, such as coronary heart disease, 
hypertension, and valvular heart disease. While hypertension,99-104 and coronary heart 
disease (Chapter 4.1) are risk factors for developing dementia, results in Chapter 4.2 suggest 
valvular heart disease is not. Nevertheless, if additional reports confirm that dementia risk 
with coronary heart disease are largely due complications of clinical heart failure,105 this 
would call for similar studies investigating mediation of hypertension and more severe 
valvular heart disease than was subject of investigation in this thesis. Despite the evident 
disturbance of systemic flow with heart failure, complications are not to arise merely from 
haemodynamic impairment. Other mechanisms outlined in Chapter 4.1 include 
thromboembolic complications, shared aetiology including (vascular) amyloid, effects of a 
pro-inflammatory state (Box 2), or direct effects of natriuretic peptides. Thromboembolism 
due to secondary arrhythmia,106 or turbulent blood flow causing brain ischaemia,107,108 may 
contribute to cognitive decline and dementia acutely or through repeated subclinical insults. 
Yet, individual variation in thromboembolic risk is high, and likely attributable to a variety of 
pro-thrombotic factors. Because of its relevance in incident cardiovascular disease and 
mortality,109 I have studied Von Willebrand factor and its main cleavage protein ADAMTS13 
in Chapter 4.4. Short-term associations with Von Willebrand factor may indicate a role of 
endothelial damage rather than a prolonged thrombotic state. Intriguing novel associations 
of ADAMTS13 with dementia, which mimic ischaemic stroke risk in their interaction with 
diabetes, provide an incentive for study of independent effects of ADAMTS13 in various 
manifestations of vascular disease, including dementia. Future studies may look further to 
identify determinants of high thrombotic risk, such as genetic influence to treatment 
response,110,111 and thrombogenic factors like the neutrophil extracellular trap112 in order to 
identify patients at high risk, and fit suitable treatment regimens in which benefit outweighs 
risk for long-term prevention of stroke as well as dementia. Regarding dementia, it is 
thereby, at least in my view, of the utmost importance to determine whether 
cerebrovascular pathology stands in any relation at all to the accumulation of amyloid in 
either the vessel wall or brain parenchyma. In a cross-sectional analysis of the Mayo Clinic 
Study of Aging, a composite of cardiovascular and metabolic risk factors for cognitive decline 
was related to neurodegeneration, but not with PET defined amyloid burden. In contrast, 
mid-life vascular and metabolic risk factors have been associated with 18F-florbetapir uptake 
in late-life in the population-based ARIC study.39 My study in Chapter 4.3 suggests that 
shared effects of amyloid on the brain and systemic vasculature are most likely to arise from 
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Box 1 (continued). 
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prevention in the statin era. Whilst for stroke prevention such interventions depend on the 
symptomatology of the stenotic disease, the prolonged exposure contributing to 
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different paradigm. It thereby remains to be determined whether such associations are the 
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visible in the watershed areas on the border of arterial territories, which appear vulnerable 
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detection limit of in vivo clinical imaging,97 invisible on 1.5 tesla MRI applied in the 
Rotterdam Study, it is interesting to speculate about their role in the predominantly frontal –
possibly watershed– differences in interhemispheric volumes in Chapter 3.5, and potential 
mediation of associations of dementia with symptomatic and subclinical heart disease.98  
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hypertension, and valvular heart disease. While hypertension,99-104 and coronary heart 
disease (Chapter 4.1) are risk factors for developing dementia, results in Chapter 4.2 suggest 
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valvular heart disease than was subject of investigation in this thesis. Despite the evident 
disturbance of systemic flow with heart failure, complications are not to arise merely from 
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pro-inflammatory state (Box 2), or direct effects of natriuretic peptides. Thromboembolism 
due to secondary arrhythmia,106 or turbulent blood flow causing brain ischaemia,107,108 may 
contribute to cognitive decline and dementia acutely or through repeated subclinical insults. 
Yet, individual variation in thromboembolic risk is high, and likely attributable to a variety of 
pro-thrombotic factors. Because of its relevance in incident cardiovascular disease and 
mortality,109 I have studied Von Willebrand factor and its main cleavage protein ADAMTS13 
in Chapter 4.4. Short-term associations with Von Willebrand factor may indicate a role of 
endothelial damage rather than a prolonged thrombotic state. Intriguing novel associations 
of ADAMTS13 with dementia, which mimic ischaemic stroke risk in their interaction with 
diabetes, provide an incentive for study of independent effects of ADAMTS13 in various 
manifestations of vascular disease, including dementia. Future studies may look further to 
identify determinants of high thrombotic risk, such as genetic influence to treatment 
response,110,111 and thrombogenic factors like the neutrophil extracellular trap112 in order to 
identify patients at high risk, and fit suitable treatment regimens in which benefit outweighs 
risk for long-term prevention of stroke as well as dementia. Regarding dementia, it is 
thereby, at least in my view, of the utmost importance to determine whether 
cerebrovascular pathology stands in any relation at all to the accumulation of amyloid in 
either the vessel wall or brain parenchyma. In a cross-sectional analysis of the Mayo Clinic 
Study of Aging, a composite of cardiovascular and metabolic risk factors for cognitive decline 
was related to neurodegeneration, but not with PET defined amyloid burden. In contrast, 
mid-life vascular and metabolic risk factors have been associated with 18F-florbetapir uptake 
in late-life in the population-based ARIC study.39 My study in Chapter 4.3 suggests that 
shared effects of amyloid on the brain and systemic vasculature are most likely to arise from 



C H A P T E R  6  

332 
 

(vascular) amyloid-β40. It is important to note that standardised uptake value ratios of 
amyloid tracers, whether 18F-florbetapir, 18F-florbetapen, or 11C-PiB, appear to reflect the 
predominant insoluble form of amyloid,113,114 which unlike vascular amyloid is mostly 
amyloid-β42.115,116 As these are some of the very few studies that have investigated amyloid 
in relation to vascular disease, more evidence is urgently needed to understand the 
interplay, or lack thereof, between various pathologies leading to cognitive decline. The 
suggestion that different amyloid-β isoforms contribute to neurodegenerative pathology 
differently, and the inability of PET tracers to differentiate between these, emphasises that 
studies of cerebrospinal fluid markers, covering amyloid and others, in unselected 
populations remain a challenging, but likely worthwhile undertaking in unravelling the 
origins of Alzheimer pathology. Other markers could be directed at function and integrity of 
the cerebral small vasculature, of which I shall provide more detail in the next paragraph. 
 
 
Box 2. Inflammatory cytokines are an important mediator in the effects of tissue hypoxia.  
I have outlined various potential mechanisms by which hypoxia can lead to neuronal cell loss 
in Chapter 3. Reductions in tissue oxygenation can directly trigger expression of various 
inflammatory cytokines via activation of hypoxia-inducible transcription factors,117 which 
may in turn lead to microglia activation and oxidative stress along with release of other pro-
inflammatory neurotoxic factors (e.g. TNF-α and IL-1β).118-120 Of the many cytokines that 
have been investigated, and found implicated, in Alzheimer’s disease in countless preclinical 
and clinical studies,120,121 only a handful (and arguably not the most specific) have been 
assessed in relation to the occurrence of dementia in the population (Table 2). Given the 
wide implication of the innate immune system in Alzheimer’s disease through recent genetic 
studies,123-125 assessment of additional cytokines both in population setting seems 
warranted, and would be particularly interesting against the backdrop of cerebral 
haemodynamic changes, hypoxia, and cerebral small-vessel disease.126 

 

Inflammatory marker Number of studies Analysis* All-cause dementia 
(HR, 95% CI) 

Alzheimer’s disease 
(HR, 95% CI) 

C-reactive protein 10 Quantiles 1.37 (1.05-1.78) 1.15 (0.86-1.52) 
Interleukin-6 5 Quantiles 1.40 (1.13-1.73) 1.20 (0.94-1.53) 
α1-antitrypsine 2 Quantiles 1.54 (1.14-2.08) 1.41 (0.98-2.02) 
Lp-PLA2 activity 2 Quantiles 1.40 (1.03-1.90) 1.10 (0.71-1.68) 
Lp-PLA2 mass 2 Continuous 1.06 (0.94-1.18) 1.06 (0.93-1.20) 
Fibrinogen 2 Continuous 1.27 (1.12-1.44) n/a 

Table 2. Inflammatory markers in relation to incident dementia and Alzheimer’s disease. Results from a 
systematic review and meta-analysis of population-based studies highlighted systemic markers of a pro-
inflammatory state that are also often elevated in cardiovascular disease, and provide support for further study 
of more Alzheimer-specific markers in the community.127 Lp-PLA2=lipoprotein-associated phospholipase A2; 
HR=hazard ratio; CI=confidence interval; n/a=not available. *=studies differed in means of exposure 
classification; results are presented here for the highest versus the lowest quantile. 
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Throughout this dissertation, cerebral small vessel disease emerges as an underlying cause, 
effect modifier, or mediator in various of the presented associations. Whether by 
impairment of neurovascular coupling, hampered nutrient extraction, disturbed blood-brain 
barrier integrity, aberrant angiogenesis, or amyloid clearance, to name just a few, cerebral 
small vessel disease exerts important effects on the brain.129,130 These effects translate into 
consistent increases in the risk of dementia with cerebral small-vessel disease in the 
community (Figure 8), while at the same time very little is known about its underlying 
pathophysiology.131 The difficulty arises with the agglomeration of pathologies that may be 
captured under the definition of small-vessel disease, none of which are very well captured 
on in vivo (Box 3). From endothelial cell and pericyte dysfunction in the tunica intima to 
impaired vascular smooth muscle cells in the tunica media, and the fragility of the single-cell 
lumen at the capillary level; these are all amassed in a handful of all-encompassing MRI 
markers. And even what we appreciate there is just a tip of the iceberg of disarray in the 
cerebral white matter.132 Diffusion imaging now takes us to the next level of detection, with 
abnormalities in microstructure emerging as soon as middle-age in relation to cardiovascular 
 

 
Figure 8. Association between cerebral small-vessel disease and risk of dementia, on the basis of all published 
population-based studies.128 HR=hazard ratio; CI=confidence interval. 



C H A P T E R  6  

332 
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amyloid tracers, whether 18F-florbetapir, 18F-florbetapen, or 11C-PiB, appear to reflect the 
predominant insoluble form of amyloid,113,114 which unlike vascular amyloid is mostly 
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Table 2. Inflammatory markers in relation to incident dementia and Alzheimer’s disease. Results from a 
systematic review and meta-analysis of population-based studies highlighted systemic markers of a pro-
inflammatory state that are also often elevated in cardiovascular disease, and provide support for further study 
of more Alzheimer-specific markers in the community.127 Lp-PLA2=lipoprotein-associated phospholipase A2; 
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Throughout this dissertation, cerebral small vessel disease emerges as an underlying cause, 
effect modifier, or mediator in various of the presented associations. Whether by 
impairment of neurovascular coupling, hampered nutrient extraction, disturbed blood-brain 
barrier integrity, aberrant angiogenesis, or amyloid clearance, to name just a few, cerebral 
small vessel disease exerts important effects on the brain.129,130 These effects translate into 
consistent increases in the risk of dementia with cerebral small-vessel disease in the 
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risk factors (Figure 9), closely related to changes in amyloid-β42 in the cerebrospinal 
fluid.133,134 It begs the question how these microstructural abnormalities relate to preclinical 
observations of neurovascular unit dysfunction, blood-brain barrier disintegration, and 
demyelination. The importance of the blood-brain barrier covers many processes, as has 
been extensively discussed elsewhere,129 but I shall highlight certain mechanisms relating to 
cerebral blood flow and haemodynamic response. From pathology it is known that cerebral 
small-vessel disease consist of atherosclerosis, hyaline deposition (lipohyalinosis), and 
fibrotic changes with arteriolosclerosis.135 Overexpression of hypoxia induced factors 
suggests involvement of chronic hypoperfusion,136 but evidence from a small number of 
longitudinal studies is conflicting about whether hypoperfusion precedes or is a 
consequence of white matter changes.137 The former is plausible, as vital components of the 
neurovascular unit, notably pericytes and vascular smooth muscle cells, are implicated in 
white matter disturbance and neurodegeneration,138,141 as well as progression of cerebral 
amyloid angiopathy.142 This lends support to the idea that neurovascular dysfunction can 
lead to accumulation of amyloid-β, which in turn enhances vascular and neuronal damage 
due to its toxic effects.143 Whether in the initial stages, or as a consequence of disease, these 
processes may be influenced by endothelial activation, inflammation, (aberrant) 
angiogenesis, and capillary dysfunction,121,144,145 which could all leave there mark on the 
conglomerate of small-vessel disease seen on in vivo MRI. Recent advances in neuroimaging 
may allow a more detailed impression of metabolism, blood flow, and blood-brain barrier 
permeability to facilitate insight in the pathophysiology of cerebral small-vessel disease.146 
At the same time, a closer look at long established methods may also shed light on 
previously underappreciated differences in for example patterns of white matter 
hyperintensities on MRI,147 and the paradox between dementia risk and small-vessel disease 
among APOE ε2 carriers.148 If we succeed in enhancing a two-way interaction between 
preclinical and clinical study design, linking abovementioned observations from lab to 
population, I am certain that such studies will aid greatly in our understanding of the 
cerebrovascular contribution to dementia. 
 

 
Figure 9. Risk factors for impaired white matter integrity, as measured by mean diffusivity. Detrimental effects 
of risk factors on white matter integrity are already measurable in mid-life. HTN=hypertension; 
HC=hypercholesterolaemia; SMOKE=current smoking; T2D=type 2 diabetes; BMI=body mass index per 5 points 
increase. (Cremers LGM & Wolters FJ, 2017)  
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Box 3. Current techniques for in-vivo imaging of blood vessels fall short in visualisation of 
the cerebral small vasculature. Computed tomography (CT) and magnetic resonance 
imaging (MRI) allow imaging of large arteries and arterioles down to 100-300μm in diameter, 
but to really understand the pathophysiological processes underlying small-vessel disease 
more fine-grained insight in the microcirculation, with its capillaries of generally <20 μm in 
diameter, is needed. Albeit not applied directly to the brain, such insight might come from 
in-vivo imaging of the microvasculature using sidestream dark field imaging (SDF). SDF is as a 
rapid, non-invasive imaging method, that allows direct visualisation of submucosal capillary 
beds by emitting light at a frequency optimal for absorption by deoxy- and oxyhemoglobin in 
erythrocytes (Figure 10).149 SDF-derived measures have recently emerged as a marker of 
microvascular health in patients with diabetes,150 undergoing cardiac surgery,151 or at the 
intensive care unit.152 Using the MicroScan SDF imaging device (MicroVision Medical, 
Amsterdam, the Netherlands) for sublingual measurements I have, in highly appreciated 
collaboration with Drs. S. Sedaghat and S. Licher, assessed intra-rater reliability on 20 
healthy young volunteers, and feasibility of the method in pilot study in the Rotterdam Study 
cohort. Intra-rater reliability was reasonable for small vessels, but poor for the larger vessels 
within the capillary bed (i.e. small arterioles to large capillaries) (Table 3), which may reflect 
high within subject variability, but could also indicate low between subject variability 
potentially causing it to take on negative values. In a healthy population, this is not unlikely, 
and this may be one of the limitations of the methodology, compared to its previous 
applications in patients with more severely impaired microcirculation. In the feasibility 
study, SDF imaging was applied to 50 consecutive Rotterdam Study participants at the 
research centre after an initial training period of several weeks. Upon systematic grading of 
the image quality,153 however, there were problems with stability, and to a lesser extent 
focus and applied pressure (Figure 11). 

 

    
Figure 10. SDF-image of the submucosal capillaries. The left panel shows a sublingual measurement in a 
healthy individual. In the right panel, automated off-line detection of the vessels in the captured image is seen 
(AVA Software version 4, MicroVision Medical BV, Amsterdam, the Netherlands). 
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Figure 10. SDF-image of the submucosal capillaries. The left panel shows a sublingual measurement in a 
healthy individual. In the right panel, automated off-line detection of the vessels in the captured image is seen 
(AVA Software version 4, MicroVision Medical BV, Amsterdam, the Netherlands). 
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Box 3 (continued). 

 Intra-rater #1 Intra-rater #2 Inter-rater 

Number of crossings -0.30 (-2.4,0.51) 0.13 (-1.42, 0.69) 0.09 (-1.3, 0.64) 
DeBacker density -0.30 (-2.4, 0.51) 0.13 (-1.42, -0.69) 0.09 (-1.3, 0.64) 
Perfused number of crossings -0.10 (-1.89, 0.58) 0.002 (-1.78, 0.65) 0.17 (-1.09, 0.67) 
Perfused DeBacker density -0.10 (-1.89, 0.58) 0.002 (-1.78, 0.65) 0.17 (-1.09, 0.67) 
Proportion perfused vessels 0.28 (-0.89, 0.73) -1.17 (-15, 0.77) -0.02 (-1.92, 0.64) 

Number of crossings (small) 0.79 (0.44, 0.92) 0.55 (-0.24, 0.84) -0.17 (-1.97, 0.54) 
DeBacker density (small) 0.79 (0.44, 0.92) 0.55 (-0.24, 0.84) -0.17 (-1.97, 0.54) 
Perfused number of crossings (small) 0.77 (0.38 – 0.91) 0.57 (-0.21, 0.85) -0.05 (-1.66, 0.58) 
Perfused DeBacker density (small) 0.77 (0.38 – 0.91) 0.57 (-0.21, 0.85) -0.05 (-1.66, 0.58) 
Proportion perfused vessels (small) 0.56 (-0.15, 0.84) -0.62 (-5.7, 0.63) 0.18 (-1.26, 0.70) 

Table 3. Intra-rater and interrater agreement for several SDF imaging parameters. Automated quantification 
was done using AVA Software version 4 (MicroVision Medical, Amsterdam, the Netherlands). Values are the 
intra-class correlations, for the interrater agreement presented for the means of two readings. 
 

 
Figure 11. Assessment of image quality from the captured MicroScan images of a random subset of 30 
Rotterdam Study participants. Images were graded according to a previously published quality score.153 
Illumination relates to brightness and contrast; Focus to sharpness in the region of interest; Content to 
determination of the types of vessels imaged; Stability to frame motion that can be adequately stabilised 
without blur; Pressure to iatrogenic mechanical pressure causing misrepresentation of flow. 
 

Continuous work may solve part of the stability issue by using a stable treatment chair, and a 
foot pedal rather than a mouse button to capture the image on scope. Additionally, several 
additional captured frames for image selection may improve image quality, and 
improvements in automated segmentation with new software releases may further improve 
consistency. All in all, this pilot approach reveals that a number of challenges pertaining SDF 
imaging need solution in further studies in order to derive such reliable and consistent 
parameters of the microcirculation that the method is feasible for use in unselected 
population of community-dwelling individuals, in whom within-subject variability needs to 
be minimised to detect meaningful between-subject variability. 
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A genetic basis for risk prediction 
In the above discussion of aetiology, I have several times staged a genetic predisposition to 
dementia, notably APOE, as an important tool in identifying preclinical changes and 
unravelling disease aetiology. Its second useful purpose, which is mainly contemplated in 
Chapter 5, I shall address here. The long preclinical disease phase of dementia, in 
combination with the failure of numerous trials that enrolled patients in the symptomatic 
later stages of disease,154,155 has led to an urge for earlier intervention, with several 
prevention trials underway.30,156,157 The feasibility of such trials largely depends on the ability 
to recruit individuals early, but nevertheless at such a stage that clinical decline can be 
observed during the trial period. One strategy to achieve this is to focus on individuals at 
high genetic risk, and several trials now use genetic data for inclusion of individuals at high 
risk of dementia (e.g.  DIAN  (ClinicalTrials.gov Identifier NCT01760005) and the Generation 
Study (NCT02565511)). Despite this expeditious attitude, very few studies have in fact 
documented prospective, absolute risks of developing dementia, or mild cognitive 
impairment for that matter. The APOE-associated risks I describe in Chapter 5.1 are 
substantially lower than previously reported estimates on the basis of cross-sectional and 
case-control data, and markedly higher in a convenience cohort than in representative 
samples of the general population. The pool of eligible trial participants for any particular 
trial will determine which estimates are most suitable for the situation at hand, but in any 
case, accounting for characteristics of the source population is vital to trial design and 
reliably informing potential participants. Additional studies providing prospectively derived 
absolute risks with varying sampling strategies, clinical assessment methods, and population 
characteristics are critical to developing the best possible answers for clinical trial design. As 
reference data from the general population are – at least in Europe and North America – 
often already in store, this is an area in which pharmaceutical industry may well work in 
concert with academia for advancement of trial recruitment and timely results. 
 
Any trial using genetic eligibility criteria while aiming to retain meaningful generalisability of 
its findings should include APOE in its sampling strategy, but with the increasing number of 
identified common risk variants, it need not be limited to APOE. Since the first genome-wide 
significant loci for Alzheimer’s disease were identified in 2010,158 over 20 common genetic 
variants followed. As shown in Chapter 5.4 current insight in genetic risk can already make 
valuable contributions to risk stratification for dementia in the general population, as was 
previously suggested on the basis of discrimination between cases and controls,159 and 
relative hazards from a joint analysis of several prospective cohort studies.160 Yet, much of 
the heritability of dementia remains unaccounted for. Yielding whole genome data from 29 
Alzheimer disease centres in the United States, it was estimated that about 50% of 
phenotypic variance is explained by genetics, of which half is accounted for by APOE, and 
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Box 3 (continued). 
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Figure 11. Assessment of image quality from the captured MicroScan images of a random subset of 30 
Rotterdam Study participants. Images were graded according to a previously published quality score.153 
Illumination relates to brightness and contrast; Focus to sharpness in the region of interest; Content to 
determination of the types of vessels imaged; Stability to frame motion that can be adequately stabilised 
without blur; Pressure to iatrogenic mechanical pressure causing misrepresentation of flow. 
 

Continuous work may solve part of the stability issue by using a stable treatment chair, and a 
foot pedal rather than a mouse button to capture the image on scope. Additionally, several 
additional captured frames for image selection may improve image quality, and 
improvements in automated segmentation with new software releases may further improve 
consistency. All in all, this pilot approach reveals that a number of challenges pertaining SDF 
imaging need solution in further studies in order to derive such reliable and consistent 
parameters of the microcirculation that the method is feasible for use in unselected 
population of community-dwelling individuals, in whom within-subject variability needs to 
be minimised to detect meaningful between-subject variability. 
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A genetic basis for risk prediction 
In the above discussion of aetiology, I have several times staged a genetic predisposition to 
dementia, notably APOE, as an important tool in identifying preclinical changes and 
unravelling disease aetiology. Its second useful purpose, which is mainly contemplated in 
Chapter 5, I shall address here. The long preclinical disease phase of dementia, in 
combination with the failure of numerous trials that enrolled patients in the symptomatic 
later stages of disease,154,155 has led to an urge for earlier intervention, with several 
prevention trials underway.30,156,157 The feasibility of such trials largely depends on the ability 
to recruit individuals early, but nevertheless at such a stage that clinical decline can be 
observed during the trial period. One strategy to achieve this is to focus on individuals at 
high genetic risk, and several trials now use genetic data for inclusion of individuals at high 
risk of dementia (e.g.  DIAN  (ClinicalTrials.gov Identifier NCT01760005) and the Generation 
Study (NCT02565511)). Despite this expeditious attitude, very few studies have in fact 
documented prospective, absolute risks of developing dementia, or mild cognitive 
impairment for that matter. The APOE-associated risks I describe in Chapter 5.1 are 
substantially lower than previously reported estimates on the basis of cross-sectional and 
case-control data, and markedly higher in a convenience cohort than in representative 
samples of the general population. The pool of eligible trial participants for any particular 
trial will determine which estimates are most suitable for the situation at hand, but in any 
case, accounting for characteristics of the source population is vital to trial design and 
reliably informing potential participants. Additional studies providing prospectively derived 
absolute risks with varying sampling strategies, clinical assessment methods, and population 
characteristics are critical to developing the best possible answers for clinical trial design. As 
reference data from the general population are – at least in Europe and North America – 
often already in store, this is an area in which pharmaceutical industry may well work in 
concert with academia for advancement of trial recruitment and timely results. 
 
Any trial using genetic eligibility criteria while aiming to retain meaningful generalisability of 
its findings should include APOE in its sampling strategy, but with the increasing number of 
identified common risk variants, it need not be limited to APOE. Since the first genome-wide 
significant loci for Alzheimer’s disease were identified in 2010,158 over 20 common genetic 
variants followed. As shown in Chapter 5.4 current insight in genetic risk can already make 
valuable contributions to risk stratification for dementia in the general population, as was 
previously suggested on the basis of discrimination between cases and controls,159 and 
relative hazards from a joint analysis of several prospective cohort studies.160 Yet, much of 
the heritability of dementia remains unaccounted for. Yielding whole genome data from 29 
Alzheimer disease centres in the United States, it was estimated that about 50% of 
phenotypic variance is explained by genetics, of which half is accounted for by APOE, and 
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another 5% by the other current genetic discoveries.161 Although the predictive value of 
genetics may be enhanced by the use of polygenic risk scores,162,163 it thus seems that, at 
least for the moment, a simple family history is a valuable tool for risk stratification in 
research and most certainly clinical setting. Information about age at onset in relatives is 
thereby indispensable, and I believe that the evidence from Chapter 5.3, along with a prior 
modelling study,164 provides the evidence needed for its incorporation in routine clinical 
practice, with an age cut-off at (the pragmatic limit of) about 80 years.  
 
Whilst genetic risk prediction will be refined by identification of further risk variants, 
substantial additional improvement of prediction could be achieved by accounting for 
sources of inter-individual variability in gene expression. The predictive value of genetic 
variants may vary widely on an individual basis due to changes in transcription or translation. 
Although extensive discussion of gene-environment interactions, epigenetics, and 
microRNAs is beyond the scope of this dissertation, increasing insight in these phenomena 
could benefit both understanding of aetiology and risk prediction. Additionally, more precise 
prediction of disease may be achieved by measuring gene products in the circulation. This is 
exemplified in Chapter 5.5 with associations of plasma apolipoprotein E (apoE) independent 
of the APOE genotype, and notably of discriminative value in heterozygous APOE carriers 
who have noticeably wider varying expression.165 Other studies underline the quantitative 
importance of apoE in lipid metabolism and onset of dementia and ischaemic heart 
disease.166 Interestingly, apoE is one of relatively few lipoproteins present both in plasma 
and cerebrospinal fluid. As the central nervous system does not use triglycerides as an 
energy source, and receptor-mediated transcytosis of apolipoproteins occurs across the 
blood-brain barrier into the systemic circulation,129 apoB containing (very) low- and 
intermediate-density lipoproteins are absent in the healthy brain. This leaves it reliant on 10 
lipoproteins in high-density lipoprotein (HDL)-like particles, compared to 85 different 
proteins in plasma HDL.167 Aside apoE, this includes apoA-I, apoA-II, apoA-IV, apoD, apoC-II, 
apoC-III, apoC-IV, apoH, and apoJ (clusterin). Their change with age, or role in health and 
disease remains much unknown. Although apoE is the predominant apolipoprotein in the 
brain, it is interesting to speculate whether measurement of various specific lipoproteins 
might explain inconsistencies in the literature regarding the association of traditionally 
measured lipid fractions with dementia,168 and may provide a conglomerate of accessible 
biomarkers to aid in risk prediction of dementia. The recently reported associations of 
several peripheral metabolites, notably HDL fractions, with cognitive performance and 
dementia risk in that respect opens an interesting avenue.169  
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With the seemingly fast approaching implementation of genetics for clinical risk 
stratification, it is important to also acknowledge its impending mainstream application in 
direct-to-consumer genetic testing. Manufacturers like 23andMe currently only includes 
carriership of the APOE ε4 allele in their genetic risk result for late-onset Alzheimer’s disease, 
but results like in Chapter 5.4 may change that stance on the basis of consistent reports in 
only a few population-based studies. Against the backdrop of this wide access to genetic 
information, it is important to advocate the preventability of dementia, and discourage a 
general conception of the disease as the pending sword of Damocles (Figure 5). 
Theoretically, even the pathogenesis of a completely heritable disease could occur solely 
through gene-environment interactions, and some (more subtle) examples can be 
appreciated for instance in shared genetics between body mass index and cognition.170 As 
for trial eligibility, it is my opinion that any gain in power by selection of trial participants on 
the basis of (genetic) risk should be carefully weighed against the potential reduction of 
generalisability. Whilst feasibility warrants a certain degree of pragmatism, this should not 
withhold continuous observation of trial participants and other open-label use, and serious 
consideration of the benefits to a wider population before the chicken with the golden eggs 
goes to market.171 And with that, it is high time that I move on towards a critical assessment 
of the foundation upon which these aforementioned statements are made. 
 
 
METHODOLOGICAL CONSIDERATIONS 
 
“Most published research findings are false”.172 The infamous quote by John Ioannidis was 
accompanied by simulations showing that in most study designs and settings, a research 
claim is more likely to be false than true. Sadly his estimations turned out not far from the 
truth, with about half of psychological research reports failing to replicate;173 a statistic that 
is likely even worse for cognitive neuroscience.174 Many of the same perils threaten 
dementia research: an myriad of small studies testing a great number of potential pathways 
and relationships, using rather few standards in the use of biomarkers, in the face of 
immense financial interests and commitment to longstanding theories in an overheated 
research area. How many of the findings presented in this dissertation will stand the test of 
time? Fortunately, not all is lost. The most important determinants of a study’s positive 
predictive value are the a priori probability (i.e. a well-founded hypothesis), and the 
(elimination of) bias.172 To the ears of an epidemiologist, such notions sound like perfect 
symphony. Keeping in mind that methods are never more than a means to an aim, some 
consideration of their use, misuse, and future use is certainly in place. 
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Study population and design 
Salus populi suprema lex esto. – Cicero, De Legibus Book III  
All the original research in this dissertation is embedded in one or multiple population-based 
cohort studies. The importance of the study setting is I think best illustrated by the average 
age at diagnosis of dementia in the population. Of Rotterdam Study participants who 
developed dementia, the median age at diagnosis was 84.0 years (Figure 12), which is 
substantially higher than the age of most participants in clinical studies. Elderly individuals, 
particularly those in nursing homes, get omitted from many studies due to referral bias, and 
tertiary centres which are most prolific academically, tend to specialise in young onset 
dementia with patients presenting not seldom before age 65. Is it truly the welfare of the 
people that is served? Given the accumulation of various pathologies in the elderly brain, a 
60-year old patient with dementia is likely incomparable to their 85-year old counterpart in 
most ways if it comes to aetiological (or even diagnostic and prognostic) study. Although this 
renders findings from population studies more generalisable to the wider source population, 
it should be noted that the lack of ethnic and socioeconomic diversity in the Ommoord area 
might still limit applicability of results outside the Rotterdam Study population. 
 

 
Figure 12. Age at onset of dementia in the population, based on data from the Rotterdam Study between 
1990 and 2016. 
 

Next to generalisability, the population-based design of presented studies limits potential 
selection bias. The average response rate of 72% in the Rotterdam Study is, in that respect, 
still not perfect, but comparable to other population studies like the Framingham Heart 
Study, and much higher than in contemporary biobanks such as the UK Biobank with a 
response rate of less than 10%.175 Moreover, the wide range of invitees renders participation 
less related to the exposure and outcome of interest. Evermore important than selection at 
baseline is the completeness of follow-up. I consider the extensive follow-up data collection 
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of the Rotterdam Study one of its main advantages for dementia research, and ergo one of 
the strongpoints of this thesis, in particular because the various means of disease 
ascertainment – as eluded to below – generally limit attrition to less than five percent. This, 
however, does not apply to the measures that solely rely on repeated centre visitation. 
Despite the heart-warming dedication of the Rotterdam Study participants, some attrition 
during the course of the four-yearly examination cycle is inevitable. We observe about 20% 
attrition per cycle, which is generally related to baseline exposure (e.g. Chapter 3.1). 
Subsequent selection bias may thus have altered – and most likely attenuated – effect 
estimates. The only way of preventing this bias would be by more frequent in-person 
examinations, but incremental costs, research centre capacity, and burden on participants 
cause higher frequency examination cycles unfeasible. That is why, with the exception of the 
phenomenal yearly participation rates in the (somewhat smaller) Rush Memory and Ageing 
Project and Religious Orders Study,176 participants of large population-based cohorts revisit 
at most once every four years. Nevertheless, we have now arrived at a stage that three and 
at times even four consecutive measurements of notably cognition are available in the 
Rotterdam Study (e.g. Chapter 3.3 and 4.4), with analytical techniques like linear mixed 
models accounting for attrition to some degree. Yet, it is not just attrition that hampers use 
of these tests. 
 
Measuring cognition 
Following the failures of several dementia prevention trials in the late 1990s and early 
2000s, clinical trials started to determine the effect of interventions on cognition as a more 
sensitive, continuous outcome measure than dementia.29 Changes in cognitive test 
performance can more readily detect a role of determinants in the long pre-symptomatic 
neurodegenerative disease course (thus rendering reverse causation less likely). From a 
population perspective, it furthermore captures the burden of cognitive impairment beyond 
that of dementia only. Cognitive test results were therefore assessed and reported in every 
chapter for which they were measured along with the exposure of interest, and thus make 
up an important pillar of the presented findings. Yet, cognitive performance is versatile. 
Subject to large within person variability, whether due to time of day,177 sugar or caffeine 
consumption,178 or a good night’s rest,179 true effects may easily be obscured. Any gain in 
accuracy of cognitive measures should therefore be applauded.  
 
With the aim of improving measurement accuracy, I have made minor adjustments to the 
analysis plan along the course of this research undertaking. To maximise the yield from the 
test of manual dexterity (i.e. the Purdue pegboard), I have turned to using the sum score of 
three attempts (dominant hand, non-dominant hand, and both) rather than a single score 
only. Furthermore, a prudent time-penalty to account for error in the Stroop task resulted in 
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another inconsistency between chapters. I thereby adopted the "arbitrary but […] justified 
by the situation” plan of correction proposed by John Ridley Stroop in his original 1935 
paper.180 Although differences between the adjusted and unadjusted scores are in practice 
modest, I believe the rationale favours the more elegant error adjustment, and this has now 
been adopted as the standard approach within the Rotterdam Study. As a third matter of 
inconsistency, the included tests somewhat differed between chapters, as memory testing 
and manual dexterity were only added to the core protocol from the fourth examination 
cycle onwards, whereas executive function and information processing were already 
incorporated one cycle earlier. Although the exact reasons never became fully clear to me, I 
suspect it relates to the belief at the time that executive dysfunction was rather specific for 
vascular cognitive impairment, whereas memory would predominantly be affected in 
Alzheimer’s disease.181 Findings across cognitive domains in this thesis, along with many 
other studies, in my view support a more nuanced outlook. Certainly, pathology that 
prominently features in specific brain regions may give rise to specific symptoms, and certain 
cognitive screening tests may be more suitable than others for say vascular cognitive 
impairment,182 but the multitude of pathologies often underlying late-onset dementia cases 
merit assessment of a range of cognitive domains. 
 
This leaves us with a conglomeration of cognitive tests, which despite their differences show 
substantial correlation amongst themselves (Table 4). That notion led English psychologist 
Charles Spearman (1863-1945) to believe that disparate cognitive test scores largely reflect a 
single ´general intelligence factor’, or g-factor.183 In his seminal 1904 paper, he wrote that 
“all branches of intellectual activity have in common one fundamental function, whereas the 
remaining or specific elements of the activity seem in every case to be wholly different from 
that in all the others”. Spearman spearheaded the use of factor analysis, and it may be seen 
as a tribute to his work that the g-factor features in this thesis. The factor analysis generally 
explained about 50% of variance in cognitive test scores in the Rotterdam study sample, in 
line with observations of child and adolescent intelligence.184 While providing a more robust 
measure of cognitive performance, the g-factor, as I think rightly emphasised by 
contemporaries of Spearman, also entails a devaluation of specific abilities. More recent 
insight suggests indeed that different components of intelligence have their substrate in 
distinct neural networks, with the higher-order g-factor recruiting multiple of these.185 In 
light of such specific networks, incorporation of a motor function tests, be it gait or 
dexterity, can add important information with regard to neurodegenerative pathology, as 
we have substantiated by showing independent associations of motor function with 
dementia and parkinsonism (Figure 13).186 
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 Letter-digit Verbal fluency Stroop Word learning Purdue 
Letter-digit  .46 .52 .39 .45 
Verbal fluency .46  .38 .40 .30 
Stroop  .52 .38  .33 .36 
Word learning .39 .40 .33  .27 
Purdue  .45 .30 .36 .27  
Table 4. Correlation between cognitive test scores during the fourth examination cycle of the Rotterdam 
Study, expressed as Pearson’s correlation coefficient. For the 15-word learning task, delayed recall is depicted, 
and for the Purdue pegboard the sum score of all three attempts. 

 
Figure 13. Gait domains and incident dementia. All gait parameters were standardised, and higher scores 
correspond to worse gait (Darweesh SKL, Wolters FJ, Licher S, et al. Submitted for publication). 
 

Other limitations to the cognitive assessment battery persist, including aforementioned 
attrition and sources of within subject variability. The latter warrants further study to 
determine the magnitude and potential gain by harmonizing for instance time-of-day in 
repeated assessment. Although the four-year interval in the Rotterdam Study limits learning 
effects, the population-based inclusion of healthy and younger individuals renders ceiling 
effects all the more relevant. For this reason – and the fact that it was intended as a 
screening tool – I have refrained from using the mini-mental state examination as an 
outcome measure in this thesis. A more extensive skillset could be useful, particularly in 
younger study participants, provided its feasibility within the population-based setting.  
 
In view of these deliberations and impediments, it almost comes as a surprise that I 
generally observed consistent associations with cognitive decline in non-demented 
individuals, as compared to incident dementia. This supports the notion of a continuum of 
neurodegenerative brain pathology in the population rather than dementia as a bimodal 
disease entity.187 It should be noted that effect estimates of exposures on cognitive test 
performance were generally small, yet all but negligible in light of observed effects of the 
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dexterity, can add important information with regard to neurodegenerative pathology, as 
we have substantiated by showing independent associations of motor function with 
dementia and parkinsonism (Figure 13).186 
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 Letter-digit Verbal fluency Stroop Word learning Purdue 
Letter-digit  .46 .52 .39 .45 
Verbal fluency .46  .38 .40 .30 
Stroop  .52 .38  .33 .36 
Word learning .39 .40 .33  .27 
Purdue  .45 .30 .36 .27  
Table 4. Correlation between cognitive test scores during the fourth examination cycle of the Rotterdam 
Study, expressed as Pearson’s correlation coefficient. For the 15-word learning task, delayed recall is depicted, 
and for the Purdue pegboard the sum score of all three attempts. 

 
Figure 13. Gait domains and incident dementia. All gait parameters were standardised, and higher scores 
correspond to worse gait (Darweesh SKL, Wolters FJ, Licher S, et al. Submitted for publication). 
 

Other limitations to the cognitive assessment battery persist, including aforementioned 
attrition and sources of within subject variability. The latter warrants further study to 
determine the magnitude and potential gain by harmonizing for instance time-of-day in 
repeated assessment. Although the four-year interval in the Rotterdam Study limits learning 
effects, the population-based inclusion of healthy and younger individuals renders ceiling 
effects all the more relevant. For this reason – and the fact that it was intended as a 
screening tool – I have refrained from using the mini-mental state examination as an 
outcome measure in this thesis. A more extensive skillset could be useful, particularly in 
younger study participants, provided its feasibility within the population-based setting.  
 
In view of these deliberations and impediments, it almost comes as a surprise that I 
generally observed consistent associations with cognitive decline in non-demented 
individuals, as compared to incident dementia. This supports the notion of a continuum of 
neurodegenerative brain pathology in the population rather than dementia as a bimodal 
disease entity.187 It should be noted that effect estimates of exposures on cognitive test 
performance were generally small, yet all but negligible in light of observed effects of the 
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APOE ε4 allele of about 0.10-0.15 standard deviations (per allele) per 10 years. In my view, 
and I think many would agree, the effect of APOE is more substantial than reflected by this 
number. It underlines that much may be gained by eliminating sources of within subject 
variability, along with minimising attrition, more sensitive cognitive tests, and improved 
statistical methods for longitudinal data analysis. Application of technology, for instance by 
tools for repeated cognitive assessments on a tablet computer, designed to minimise 
learning effects, could in that respect be an important step forward. 
 
Defining and identifying dementia 
Although systematic classification of diseases had been attempted in one form or another 
for some centuries, the first formal, universally accepted classification saw the light in 1893, 
when Jacques Bertillon introduced the Bertillon Classification of Causes of Death.188 Post aut 
propter, the habit of using eponyms died out soon after. Bertillon’s classification was based 
on an earlier model by British epidemiologist William Farr, classifying disease chiefly by their 
anatomic site. Advocated by Farr, the classification was gradually expanded to also include 
morbidity, eventually leading to the International Statistical Classification of Diseases and 
Related Health Problems, in short the International Classification of Diseases (ICD), as 
endorsed by the first World Health Assembly in 1948.188 The World Health Organisation 
thereby took over the responsibility for subsequent revisions from the International 
Statistical Institute and the Health Organization of the League of Nations. The 1948 edition 
(officially the sixth revision) was the first to include a section on mental disorders, largely 
inspired by Emil Kraepelin´s nosology of psychiatric disease,189 which had dementia as a 
neurodegenerative disorder acknowledged among the Psychoses (Table 5). Meanwhile, 
inspired by the lack of disease description in the ICD, the American Psychiatric Association 
developed a variant on the ICD-6 that was first published in 1952 as the first edition of the 
Diagnostic and Statistical Manual of Mental Disorders (DSM). It was the first to focus on 
clinical rather than administrative use. 
  
The purpose of this brief historical disquisition is to highlight the continuous changes in 
diagnostic subtypes, while since the early 1980s the symptoms required for classification as 
dementia (be it major neurocognitive disorder in DSM-V) remained virtually unaltered. This is 
highly relevant for longitudinal studies, in particular when trying to establish time trends in 
the incidence of disease, as I have endeavoured in Chapter 2.3. A second observation of the 
table shows the discrepancy in detail between the DSM and ICD classifications. These 
different diagnostic criteria can give rise to large differences in dementia diagnosis, with 
prevalence reported 10-fold higher when using DSM-III criteria versus ICD-10 coding.190 Such 
differences can have a large impact on registry studies, which often rely exclusively on ICD 
coding for obtaining clinical diagnoses. We saw an example of this in Chapter 4.1, in which 
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the share of dementia diagnosis comprising Alzheimer’s disease was three- to four-fold 
lower in registry studies compared to population-based cohort studies. Third, the changes in 
classification show that, similar to the aforementioned changes in paradigm of cognition, 
memory has moved from the predominant feature of dementia to one of multiple potential 
cognitive deficits. Although clinical presentation may often remain driven by memory 
impairment, equal attention for other domains likely improves detection of the burden of 
cognitive impairment across age groups in the population. 
 
The syndrome-based diagnosis of dementia (i.e. all-cause dementia), rather than aetiological 
subtypes, has been the primary outcome measure in all of the studies in this dissertation. 
Distinguishing Alzheimer’s disease clinically from other dementia subtypes such as vascular 
dementia, dementia with Lewy bodies, or dementia with Parkinson’s disease, has proven 
challenging, if not impossible in the light of the multitude of pathologies that co-occur in the 
elderly population. This is particularly troubling since over 90% of dementia patients at the 
population level are diagnosed after the age of 70 years (Figure 12). Consequently, 
population-based studies of dementia generally face patients in whom a large number of 
factors contribute to cognitive decline and dementia onset. This highly multifactorial 
aetiology has long hampered robust definition of dementia subtypes based on clinical 
phenotype, and consensus about what defines Alzheimer’s disease in the population is 
lacking still. Yielding NINCDS criteria for clinical Alzheimer’s disease, the share of dementia 
cases classified as Alzheimer’s disease was very similar among population-based studies in 
this thesis, but not in proportion with for example registry data, and not necessarily 
reflective of underlying presence of hallmark Alzheimer pathology. Currently, definitions of 
disease subtypes are based in part on the presence or absence of risk factors, with a strong 
emphasis on cerebrovascular disease. Defining a subtype based on a determinant (aetiology-
based diagnosis) precludes proper investigation of these – or related – determinants. For 
instance, if a diagnosis of Alzheimer’s disease is conditioned on the absence of 
cerebrovascular disease, it is likely that effects on Alzheimer’s disease of risk factors that are 
associated with cerebrovascular pathology are spuriously not detected. By contrast, a 
syndrome-based diagnosis of dementia can be defined with high consistency across studies. 
In studies that incorporate imaging- or cerebrospinal fluid-based markers of underlying 
pathologies (e.g. amyloidopathy, vascular lesions), it is possible to quantify how much of the 
effects of risk factors on all-cause dementia are mediated by each pathology. However, such 
studies are turning feasible only in recent years, and longitudinal imaging data to address 
these issues are eagerly awaited. 
 
With a uniform definition of the syndrome, the challenge remains to diagnose individuals in 
society. Means of dementia ascertainment vary widely between studies, from routinely
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Statistical Institute and the Health Organization of the League of Nations. The 1948 edition 
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neurodegenerative disorder acknowledged among the Psychoses (Table 5). Meanwhile, 
inspired by the lack of disease description in the ICD, the American Psychiatric Association 
developed a variant on the ICD-6 that was first published in 1952 as the first edition of the 
Diagnostic and Statistical Manual of Mental Disorders (DSM). It was the first to focus on 
clinical rather than administrative use. 
  
The purpose of this brief historical disquisition is to highlight the continuous changes in 
diagnostic subtypes, while since the early 1980s the symptoms required for classification as 
dementia (be it major neurocognitive disorder in DSM-V) remained virtually unaltered. This is 
highly relevant for longitudinal studies, in particular when trying to establish time trends in 
the incidence of disease, as I have endeavoured in Chapter 2.3. A second observation of the 
table shows the discrepancy in detail between the DSM and ICD classifications. These 
different diagnostic criteria can give rise to large differences in dementia diagnosis, with 
prevalence reported 10-fold higher when using DSM-III criteria versus ICD-10 coding.190 Such 
differences can have a large impact on registry studies, which often rely exclusively on ICD 
coding for obtaining clinical diagnoses. We saw an example of this in Chapter 4.1, in which 
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the share of dementia diagnosis comprising Alzheimer’s disease was three- to four-fold 
lower in registry studies compared to population-based cohort studies. Third, the changes in 
classification show that, similar to the aforementioned changes in paradigm of cognition, 
memory has moved from the predominant feature of dementia to one of multiple potential 
cognitive deficits. Although clinical presentation may often remain driven by memory 
impairment, equal attention for other domains likely improves detection of the burden of 
cognitive impairment across age groups in the population. 
 
The syndrome-based diagnosis of dementia (i.e. all-cause dementia), rather than aetiological 
subtypes, has been the primary outcome measure in all of the studies in this dissertation. 
Distinguishing Alzheimer’s disease clinically from other dementia subtypes such as vascular 
dementia, dementia with Lewy bodies, or dementia with Parkinson’s disease, has proven 
challenging, if not impossible in the light of the multitude of pathologies that co-occur in the 
elderly population. This is particularly troubling since over 90% of dementia patients at the 
population level are diagnosed after the age of 70 years (Figure 12). Consequently, 
population-based studies of dementia generally face patients in whom a large number of 
factors contribute to cognitive decline and dementia onset. This highly multifactorial 
aetiology has long hampered robust definition of dementia subtypes based on clinical 
phenotype, and consensus about what defines Alzheimer’s disease in the population is 
lacking still. Yielding NINCDS criteria for clinical Alzheimer’s disease, the share of dementia 
cases classified as Alzheimer’s disease was very similar among population-based studies in 
this thesis, but not in proportion with for example registry data, and not necessarily 
reflective of underlying presence of hallmark Alzheimer pathology. Currently, definitions of 
disease subtypes are based in part on the presence or absence of risk factors, with a strong 
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based diagnosis) precludes proper investigation of these – or related – determinants. For 
instance, if a diagnosis of Alzheimer’s disease is conditioned on the absence of 
cerebrovascular disease, it is likely that effects on Alzheimer’s disease of risk factors that are 
associated with cerebrovascular pathology are spuriously not detected. By contrast, a 
syndrome-based diagnosis of dementia can be defined with high consistency across studies. 
In studies that incorporate imaging- or cerebrospinal fluid-based markers of underlying 
pathologies (e.g. amyloidopathy, vascular lesions), it is possible to quantify how much of the 
effects of risk factors on all-cause dementia are mediated by each pathology. However, such 
studies are turning feasible only in recent years, and longitudinal imaging data to address 
these issues are eagerly awaited. 
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collected healthcare data to frequent meticulous cognitive assessments per study protocol. 
For the Rotterdam Study, information from in-person screening was supplemented by data 
from the electronic linkage of the study database with medical records from all general 
practitioners and the regional institute for outpatient mental health care. In the Dutch 
healthcare system, the entire population is entitled to primary care that is covered by their 
(obligatory) health insurance. The general practitioner functions as a ‘gate-keeper’ for 
referral to secondary and tertiary care providers, who are required by law to report back to 
the referring general practitioner about test results and clinical diagnoses. With this linkage, 
the entire cohort is thus continuously monitored for detection of interval cases of dementia 
between centre visits. The combination of these two modalities improves sensitivity and 
specificity, compared to reliance on for example death certificates or registry data. 
Sensitivity and specificity of dementia diagnosis on the basis of ICD coding range between 8-
87% and 57-100%, respectively,191 whereas sensitivity of death certificates for a diagnosis is 
no higher than 54%.192 To ensure accurate interpretation, this needs to be taken into 
consideration in study design and interpretation of results obtained using routinely collected 
data. Conversely, in studies that rely solely on re-examination for diagnosis, sensitivity may 
rapidly decrease with more prolonged intervals and high loss to follow-up. Although 
analytical methods like illness-death models may in part account for the interval censoring, 
more frequent re-examination may be imperative to maintain diagnostic sensitivity with 
steeply increasing incidences in the oldest old.20 In these individuals, linkage to health care 
records is helpful, but not sufficient by itself in light of notorious under-investigation and -
diagnosis in this age group. Finally, for trends analysis, a potential disadvantage of the 
linkage is the closer correlation with health care policy. Higher detection rates could 
counterbalance a decline in the incidence of disease with increased attention for dementia 
over time,193 and this might also have led to underestimation of incidence trends in the 
Rotterdam Study.  
 
Competing risks 
With advancing age, numerous hazards fight for priority to cause death and disability. 
Although we mostly think of death as a rather unequivocal event, the counterfactual world 
of the epidemiologist begs to differ. The interplay of diseases, which occurs particularly at 
old age, becomes a potential threat for the validity of a study when interest lies in one 
specific disease outcome. Dementia mostly manifests late in life, at a time by which many 
other diseases may already have had a shot at reducing one’s lifespan, thereby precluding 
the development of dementia. As many risk factors are shared between diseases, the 
competing event of death will more likely affect those who are also at highest risk of the 
disease of interest, thereby hampering its proper study. 
 

G E N E R A L  D I S C U S S I O N  
 

349 
 

The subject of competing risks dates back as far as the 18th century, when Swiss physician 
and mathematician Daniel Bernoulli studied the possible consequences of eradication of 
smallpox on (cause-specific) mortality rates (Figure 14).194 His calculations were arguably the 
first mathematical model used in epidemiology, which might not have happened, had 
Daniel’s somewhat envious father – and himself renowned mathematician – Johann not 
asked his son to study medicine rather than mathematics, to which Daniel reportedly agreed 
only if his father would tutor him in mathematics privately. The problem of estimating failure 
probabilities in light of (elimination of) competing risks gained increasing attention in the 
second half of the 20th century,195,196 culminating in the introduction of the nowadays 
familiar subdistribution hazards model by Jason Fine and Robert Gray in 1999.197 The 
application and interpretation of these models, however, remain a challenge in clinical 
research.198  
 
While competing risk modelling, for example with the subdistribution hazard of Fine and 
Gray's models, can be valuable in prognostic studies, they are less appropriate for 
determining aetiological associations in the presence of strong competing risks.199,200 The 
fundamental issue with competing risk is that one of the main assumptions for censoring, 
independence of reasons for censoring, is no longer met. For estimating prognosis, ignoring 
the fact that death precludes development of an illness overestimates an individual's risk, 
and one would therefore intuitively want to keep a person in the risk set after occurrence of 
this competing event. Conversely, in aetiological studies, the primary interest lies in 
determining the (relative) risk of disease in those who are still at risk of the disease at a 
certain time-point. These cause-specific hazards can be obtained from a Cox proportional 
hazards model,201 in which individuals are censored at time of (competing) event, and which 
importantly does not require independence of censoring to produce valid risk 
estimates.199,200  
 
For these reasons, I have used subdistribution hazard models notably in Chapters 2.2 and 5.4 
to compute absolute risks, but cause-specific hazards throughout other aetiological studies 
requiring survival analysis. Of note, neither form of modelling addresses potential bias 
caused by competing events ‘masking’ the impact of the risk factor on the phenotype of 
interest. As most exposures examined in this dissertation are also associated with increased 
mortality, this will generally have led to underestimation of the true causal association. 
Novel analytical methods are warranted to account for this bias, or alternatively, application 
of markers sensitive to early neurodegenerative changes may in part circumvent the issue of 
the competing risk of death. 
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caused by competing events ‘masking’ the impact of the risk factor on the phenotype of 
interest. As most exposures examined in this dissertation are also associated with increased 
mortality, this will generally have led to underestimation of the true causal association. 
Novel analytical methods are warranted to account for this bias, or alternatively, application 
of markers sensitive to early neurodegenerative changes may in part circumvent the issue of 
the competing risk of death. 
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Figure 14. The table with Bernoulli’s calculations, based on the life table figures (i.e. the first two columns) 
presented earlier by Halley.202 Data originated from the city of Breslau in Austrian Silesia (presently Wroclaw, 
Poland). At the time, Breslau was considered representative of the natural evolution of a human population 
given its minimal migration; much alike the choice for the Ommoord area as the epicentre of the Rotterdam 
Study nearly 300 years later. 
 

Residual confounding and overadjustment 
Confounding, from the Latin confundere (“pour together”) is “confusion, or mixing, of 
effects; the effect of the exposure is mixed together with the effect of another variable, 
leading to bias,”203 considered one of the major threats to the validity of observational 
study. Once again, I have been fortunate that the design of the Rotterdam Study allowed for 
adjustment of many potential confounders. Nevertheless, I cannot exclude the possibility of 
residual confounding, either by exposures unadjusted for, or incompletely captured by the 
definition at hand. It is a remarkable fact that despite the profound share of vascular 
pathology in the aetiology of dementia, adjustment for traditional cardiovascular risk factor 
left effect estimates virtually unchanged across analyses in this dissertation. Either the 
determinant of interest was – somewhat unlikely – a perfect intermediate of their 
association with dementia, there was truly no association between confounder and 
exposure or outcome in the yielded data, or the effect of the potential confounder on either 

G E N E R A L  D I S C U S S I O N  
 

351 
 

exposure or outcome was insufficiently captured by the definition used in my analyses. The 
latter could particularly arise for risk factors with effects arising after prolonged exposure 
over years if not decades. For example, the associations of obesity with dementia reverses 
with advancing age,204 and adjustment for body mass index may in elderly participants not 
fully capture this effect. The same may apply to hypertension. With longer follow-up and 
historical measurements of participants available, it could be worthwhile investigating 
whether mid-life effects of risk factors on dementia incidence may be partly accountable for 
any residual confounding in late-life study. A priori, the impact of such residual confounding 
is hard to estimate, but the degree of confounding needed to negate any observed effect 
may be more easily assessed using the recently coined E-value.205 The E-value allows for 
sensitivity analysis regarding unmeasured confounding without any assumptions about the 
underlying structure of the confounder, and provides a value for the strength of the 
exposure-confounder and confounder-outcome relationships needed to dilute the effect 
estimate of interest (or its lower confidence bound) to the null. Its calculation is rather 

straightforward,205 using the risk ratio (RR): . Applying this 
formula to the association between anaemia and incident dementia in Chapter 3.4 provided 
some insights in the degree of confounding needed (in this case a RR of 2.0 for both the 
exposure-confounder and confounder-outcome association) to account for an association 
with a RR of 1.4 in the main analysis. This technique, if it were to become common practice, 
could facilitate assessment of observational evidence, and the recently proposed 
straightforward application is a huge push in the right direction. Controlling for confounding, 
however, one can feel trapped between a rock and a hard place. While accounting for 
potential confounding, a danger lures on the other side: unnecessary adjustment or over-
adjustment. Whether by reduction in precision due to control for a variable that does not 
affect bias, or by control for an intermediate variable,206 these may undermine conclusions 
about the association under investigation. In my analyses, I have aimed to carefully select 
covariates on the basis of existing mechanistic knowledge of the association of interest,207 
rather than by empirical testing for significance of individual covariates (many smaller, 
statistically non-significant effects can altogether create a meaningful bias). Nevertheless, 
mechanisms are often not all accounted for, or can get intertwined in complex 
pathophysiology, which may at times have led to unnecessary adjustment. 
 
 
IMPLICATIONS AND FUTURE PERSPECTIVES 
 
Der Wahrheit ist allerzeit nur ein kurzes Siegesfest beschieden, zwischen den beiden langen 
Zeiträumen, wo sie als Paradox verdammt und als Trivial gering geschätzt wird. – Arthur 
Schopenhauer, Die Welt als Wille und Vorstellung (1818) 
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Of this thesis, three broad implications may be taken forward. First, the potential for 
prevention of dementia, in light of compression of morbidity in late-life, deserves advocacy 
to both policy makers and the general public. Preventive interventions with small effects at 
the individual level, and relatively minor postponements in the onset of dementia could 
have a major impact on the burden of disease at the population level. Continuous 
monitoring of disease occurrence is thereby crucial to detect changes in public health, and 
observe the effects of our preventive undertakings and other contemporary trends. At the 
same time, health care systems need to prepare for this growing burden of disease by 
allocation of resources to prevention, diagnosis, and care. Already, 87% of current dementia 
care costs are incurred in high-income countries,208 where cost for dementia diagnosis in 
specialist care outweigh those in primary care by a factor of 10.208 As the burden of 
dementia grows across the globe, the largest increase will occur in low- and middle-income 
countries, such that by 2050 roughly two thirds of people with dementia will live in these 
regions. It shows above all that worldwide availability and accessibility of diagnostics, 
preventive measures, and feature disease-modifying agents will be vital to truly control the 
dementia epidemic. 
 
In order to prevent disease, it is vital to understand the aetiology, and have identified 
sufficient risk factors and indicators. Regarding preventive treatments, I believe that there is 
sufficient cause to pursue advanced insight in cerebral haemodynamic changes as a risk 
factor for cognitive decline. Well-designed longitudinal studies are needed to link 
neurovascular function to amyloid pathology, other markers of neurodegeneration, and 
dementia. Such an approach, acknowledging the entire spectrum of highly prevalent brain 
pathology in the elderly, may at last provide a paradigm that survives well outside highly 
selective specialist environments. A two-way interaction between bench and bedside is 
thereby likely to benefit translation of both into meaningful preventive strategies at a 
population level. This opens up new possibilities to population-based cohorts, like the 
Rotterdam Study. It is my belief that the traditional trade-off between the numbers needed 
to observe sufficient disease outcomes versus the desired and feasible detail in mapping 
various phenotypes will have to shift towards the latter. Notwithstanding the value of 
concurrent measurements linking various organ systems and disease characteristics, I 
believe that driven by the need for the understanding of biological mechanisms, and sped up 
by an ever increasing data availability,209,210 a next level of detail in the phenotyping of 
cohorts of several thousands of participants is necessary to yield their potential, and return 
the substantial investment by society. The tools we have in our hands to achieve this are 
promising. Broad availability of advanced imaging techniques, induced pluripotent stem cells 
to deliver organs-on-a-chip, genetic modification using CRISPR-CAS. In addition, much can 
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still be learned from yielding existing methods and data in a more fruitful and imaginative 
way. The physiological effects of widely prescribed medication, notably of the 
antihypertensive kind, on cerebrovascular resistance and reactivity. The use transcranial 
Doppler, near-infrared spectroscopy, or perfusion MRI to map vivo response to challenges 
on brain perfusion. Ways to improve methodological rigour by transferring knowledge of 
epidemiology, and applying no more than its fundamental principles throughout science. 
Possibilities to apply and investigate existing vascular care for benefit on cognition as well as 
survival and (recurrence) of vascular events. These are mere examples. Perhaps in the not so 
distant future, we shall see cognitive wellbeing integrated in care of patients with heart 
disease or stroke, and vice versa, at multidisciplinary outpatient clinics. Perhaps not too far 
from now, health and disease will (once again) be seen in an organ transcending manner, 
better preserved than restored. 
 
  
CONCLUDING REMARKS 
 
A medical library search for dementia-related publications over the last year yields over 
12,500 results, equalling about 35 studies per day. This number incites the rather unsettling 
thought that nobody is aware of the full literature on dementia or Alzheimer’s disease. How 
many of the forgotten findings should have been remembered? Which of today’s writings 
will be remembered in 100 years? Perhaps, in the final sentences of this thesis, it is prudent 
to bring to stage Alois Alzheimer. In addition to amyloid accumulation, Alzheimer noticed 
lipid deposition in his pathological specimens as he wrote in 1906: “Die Glia hat reichlich 
Fasern gebildet, daneben zeigen viele Gliazellen große Fettsäcke. Ein Infiltration der Gefäße 
fehlt vollig. Dagegen sieht man an den Endothelien ucherungserscheinungen, stellenweise 
auch eine Gefäßneubildung.”211 These findings – magnificently illustrated by Alzheimer and 
his Italian pupil Gaetano Perusini212 – have been largely ignored for many years. Now that 
we delve into the pathophysiology of APOE, we can perhaps begin to grasp the full spectrum 
of pathology described already more than a century ago. It exemplifies that it is possible, 
perhaps even likely, that the most evident aetiological factors in dementia are overlooked in 
this dissertation. As with the largely ignored observations of lipid accumulation and vascular 
proliferation by Alzheimer, the eyes do not see what the mind does not know. I do hope, 
however, that this thesis shall prove one tiny step forward, and that quite a few small steps 
from now, we shall live to remember how the full potential for prevention of this dreadful 
disease was achieved.  
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Recent years have seen a surge in dementia research, brought on by an increasing 
awareness of its present and pending consequences for public health. This focus on 
dementia has revealed a multifaceted surface, shaped by decades of exposure to a variety of 
risk factors, but what remains at its core is yet unknown. In this thesis, I examine the 
roughness of its edges, before scratching the surface to examine what lies underneath.  
 
In the first part of this thesis, I demonstrate the enormity of the burden of dementia, which 
affects 1 in 3 women, and 1 in 5 men during the course of their lifetime (Chapter 2.2). These 
high risks are also reflected in Chapter 2.1 in lifetime spent with dementia, which increases 
from 6% of remaining life years at age 65 to 42% at age 95 for women, and from 4% to 35% 
at the same ages for men. This high burden of disease in potentially highly amendable by 
preventive interventions at the population level, supported by decreases of about 30-50% 
following preventive scenarios that delay disease onset by 1 to 3 years (Chapters 2.1 & 2.2). 
The preventive potential is corroborated by declines in the age-specific incidence of 
dementia over the past decades, described in Chapter 2.3. Although insufficient to offset the 
growing burden of disease due to ageing of populations, these offer reason for cautious 
optimism, and encouragement for development and wider implementation of preventive 
strategies based on the causes of the declining incidence trends. 
 
Focussing the loupe on cerebral blood supply, I show in Chapter 3.1 that low cerebral 
perfusion predisposes to the development of dementia during on average 7 years of follow-
up, in particular in the presence of cerebral small-vessel disease or hypertension. A causal 
relationship is supported by effects of carotid artery stenosis on brain atrophy in Chapter 
3.5. Transient episodes of cerebral hypoxia due to impairment of cerebral autoregulatory 
mechanisms and oxygenation may contribute to this association, as evidenced by increases 
in dementia risk with orthostatic blood pressure in Chapter 3.2, impaired cerebrovascular 
reactivity in Chapter 3.3, and disturbed haemoglobin homeostasis in Chapter 3.4. 
 
A systematic review of the literature in Chapter 4.1 establishes that coronary heart disease 
and in particular heart failure are associated with the risk of developing dementia. This could 
reflect consequences of diminished (inotropic regulation of) cerebral blood flow, but also 
thromboembolic complications (for example involving Von Willebrand factor and 
ADAMTS13, Chapter 4.4), direct effects of natriuretic peptides, or shared aetiological 
mechanisms with a pro-inflammatory state, or relating to (vascular) amyloid-β40 in Chapter 
4.3. In contrast to coronary heart disease and heart failure, aortic valve calcification without 
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haemodynamically significant stenosis does not appear to contribute to this risk increase, 
based on a 10-year follow-up study in Chapter 4.2.  
 
In Chapter 5, I shift focus to the heritability of dementia. Effects of the most important 
common genetic risk factor for dementia, the Apolipoprotein E gene (APOE), on mortality in 
Chapter 5.1 illustrate that investigation of APOE in wider health and disease could prove 
useful in understanding biological mechanisms underlying dementia. Applying APOE carrier 
status, along with other identified common genetic risk variants of dementia to risk 
prediction of dementia in Chapter 5.4, I show that yielding genetic information allows risk 
stratification into low- and high-risk in the community, with absolute risks by age 85 ranging 
from 4% in the lowest risk category to 63% in the highest risk group, translating into a 
roughly 20-year difference in age at onset of dementia. These risks may be further refined by 
taking a specific family history (Chapters 5.3 & 5.4). A comparison of four cohorts in Chapter 
5.2 shows that for application of these absolute risks to trial design and individual risk 
prediction, it is vital to account for the source population and individual characteristics. 
Further refinement of genetic screening may come from assessment of peripheral levels of 
gene products, as exemplified by the additional predictive value of serum levels of 
apolipoprotein E above and beyond the APOE genotype in Chapter 5.5. 
 
To conclude, I discuss in Chapter 6 these main findings in light of published literature, and 
provide methodological considerations and recommendations for future research. A future 
in which identification of the causes of declining dementia incidence can serve as the 
foundation for preventive strategies. In which additional targets for prevention can be 
provided by insight in the physiological mechanisms than maintain cerebral perfusion and 
oxygenation, and the effects of hypoxia on neurons and glial cells if these mechanisms falter. 
A future in which the substantial overlap of dementia not only with stroke, but also with 
heart disease, sees integration of (vascular) care across medical specialties restored. And a 
future in which genetic factors are applied to aetiological study, as well as precise prognosis 
and targeted intervention. For the coming years, with the exciting potential of technological 
advances, and further integration of observational and translational research in light of 
established core principles of epidemiology, we are well set up to strive and take dementia 
into the realm of forgotten diseases. 
 
  

S U M M A R Y  

369 
 

SAME NVATTING  
 
Onderzoek naar dementie heeft de afgelopen jaren een grote impuls gekregen, gedreven 
door de onderkenning van haar huidige en toekomstige consequenties voor de publieke 
gezondheid. Deze gespitste blik op dementie heeft een veelzijdig ziektebeeld onthuld, 
gevormd door decennialange blootstelling aan een variëteit aan risicofactoren. 
Desalniettemin blijft de aetiologie van dementie in de kern vooralsnog onbekend. In dit 
proefschrift beschouw ik de ziektelast van dementie op populatieniveau, alvorens over te 
gaan tot onderzoek van etiologische en mogelijk predictieve factoren. 
 
In het eerste deel van dit proefschrift breng ik de enorme omvang van de ziektelast van 
dementie in kaart. Dementie treft 1 uit 3 vrouwen, en 1 uit 5 mannen gedurende hun leven 
(Hoofdstuk 2.2). Deze hoge risico’s komen ook tot uiting in de levensjaren doorgebracht met 
dementie, welke voor vrouwen toeneemt van 6% van de levensverwachting op 65-jarige 
leeftijd tot 42% op de leeftijd van 95, zoals beschreven in Hoofdstuk 2.1. Voor mannen 
betreffen deze percentages 4 en 35%. Deze hoge ziektelast is mogelijk te verminderen door 
preventieve interventies op bevolkingsniveau, hetgeen wordt onderschreven door reducties 
in risico en levensjaren met dementie van 30-50% in scenario’s waarbij preventieve 
interventies de ziekte 1 tot 3 jaar uitstellen (Hoofdstukken 2.1 & 2.2). De potentie van 
preventie wordt verder onderschreven door een afname in de leeftijdsspecifieke incidentie 
van dementie over de afgelopen decennia in Europa en Noord-Amerika, beschreven in 
Hoofdstuk 2.3. Hoewel deze afnames onvoldoende zijn om de groeiende ziektelast door 
veroudering van de populatie op te vangen, bieden zij wel reden voor voorzichtig optimisme, 
en aanzet tot ontwikkeling en wijdere implementatie van preventieve strategieën gebaseerd 
op de oorzaken van de geobserveerde trends in de incidentie. 
 
De focus verleggend naar de bloedvoorziening van de hersenen als mogelijke etiologische 
factor in dementie, laat ik in Hoofdstuk 3.1 zien dat lage doorbloeding van de hersenen een 
groter risico op dementie met zich meebrengt gedurende gemiddeld 7 jaar dat deelnemers 
werden gevolgd. Dit is in het bijzonder het geval wanneer reeds sprake is van hypertensie of 
schade aan de kleine bloedvaten in de hersenen. Causaliteit in deze associatie wordt 
ondersteund door effecten van stenosering van de arteria carotis interna op cerebrale 
atrofie in Hoofdstuk 3.5. Korte episodes van cerebrale hypoxie, te wijten aan verstoorde 
autoregulatie en oxygenatie, kunnen verder bijdragen aan de associatie tussen hypoperfusie 
en dementie. Dit laat ik zien aan de hand van verhoogd risico op dementie met 
orthostatische bloeddrukdalingen in Hoofdstuk 3.2, met verstoorde cerebrovasculaire 
reactiviteit in Hoofdstuk 3.3, en verstoorde hemoglobine homeostase in Hoofdstuk 3.4. 
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Een systematische beschouwing van de literatuur in Hoofdstuk 4.1 stelt vast dat coronair 
vaatlijden en in het bijzonder hartfalen geassocieerd zijn met een hoger risico op het 
ontwikkelen van dementie. Dit kan het gevolg zijn van (inotropische) verstoringen van de 
cerebrale perfusie, maar kan ook resulteren uit thrombo-embolische complicaties (mogelijk 
in relatie tot Von Willebrand factor en ADAMTS13, Hoofdstuk 4.4), directe effecten van 
natriuretische peptides, of gedeelde etiologische mechanismen bij een pro-inflammatoire 
status, of in relatie tot (vasculair) amyloid-β40 in Hoofdstuk 4.3. In tegenstelling tot coronair 
vaatlijden en hartfalen, lijkt calcificatie van de aortaklep van het hart zonder 
hemodynamisch significante stenosering niet bij te dragen aan deze risicoverhoging, 
gebaseerd op een studie met 10 jaar follow-up in Hoofdstuk 4.2. 
 
In Hoofdstuk 5 verleg ik de focus naar de erfelijkheid van dementie. Effecten van de 
verreweg belangrijkste veelvoorkomende genetische risicofactor voor dementie, het 
Apolipoproteine E gen (APOE), op mortaliteit in Hoofdstuk 5.1 illustreren dat onderzoek van 
APOE buiten het veld van dementie kan bijdragen aan inzicht in biologische mechanismen 
die tot dementie leiden. Het toepassen van APOE dragerschap, tezamen met andere 
bekende frequent voorkomende genetische risicovarianten, in de predictie van dementie 
staat toe om laag- en hoog-risico groepen in de bevolking te identificeren (Hoofdstuk 5.4), 
waarbij absolute risico’s tot de leeftijd van 85 jaar uiteen lopen van 4% in de laagste 
risicocategorie tot 63% in de hoogste risicocategorie, hetgeen zich vertaalt in een verschil 
van 20 jaar in leeftijd bij diagnose. Deze risico’s kunnen verder worden gespecificeerd met 
behulp van een specifieke familieanamnese (Hoofdstukken 5.3 & 5.4). Een vergelijking van 
vier cohorten in Hoofdstuk 5.2 laat echter zien dat het voor individuele risicovoorspelling en 
toepassing van deze absolute risico’s in klinische trials cruciaal is om de onderliggende 
populatie en persoonlijke karakteristieken mee te wegen. Verdere verbetering van 
genetische risicopredictie kan mogelijk komen uit meting van perifere genproducten, zoals 
serum Apolipoproteine E in Hoofdstuk 5.5.  
 
Tot slot bespreek ik in Hoofdstuk 6 al bovenstaande bevindingen in het licht van gE-
publiceerde literatuur, waarbij ik ruim aandacht geef aan methodologische factoren, en 
aanbevelingen doe voor toekomstig onderzoek. In de toekomst zie ik een belangrijke rol 
voor het identificeren van oorzaken van afnames in de incidentie van dementie als leidraad 
voor preventieve strategieën. Aanvullende doelwitten voor preventieve interventies kunnen 
voortkomen uit inzicht in fysiologische mechanismen die cerebrale doorbloeding en 
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mechanismen falen. In de toekomst zie in toenemende mate aandacht voor de overlap van 
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EPILOGUE   
 
“It is not sufficient to examine. It is also necessary to observe and reflect. And we should 
make these observations our own where the heart is concerned, as well as in an intellectual 
sense. Only then will they surrender their secrets to us, for enthusiasm heightens and refines 
our perception. As with the lover who discovers new perfections every day in the woman he 
adores, he who studies an object with an endless sense of pleasure finally discerns interesting 
details and unusual properties that escape the thoughtless attention of those who work in a 
routine way” (Santiago Ramón y Cajal – Reglas y Consejos sobre Investigación Cientifica, 
1899).  
 
Every morning when I strolled through the Museum Park, and saw the ivory-white research 
tower emerge behind the trees, I felt fortunate to dwell within the world of academia. It is a 
privilege to see the playground of one’s own curiosity merge with the wider accumulation of 
knowledge; to partake in progress, generally slow and often imperfect, but progress 
nonetheless towards a healthier world. The path of the young researcher in this world is 
marked by a growing awareness of what is yet unexplained. I have often felt astonished by 
the vast number of outstanding questions within one relatively small area in the realm of 
medicine, enough to keep my mind occupied for years to come. 
 
These questions cannot be answered without the integration of observation and 
experiment. The experimental scientist has the advantage of avoiding certain biases that 
threaten conclusions about cause and effect in observational studies. Yet, to suppose that 
observation is inherently incapable of answering on the question of causation has always 
seemed to me an impudent attack on human intellect. The biases that lure in observation 
should nevertheless not be taken lightly. This is not an easy challenge, as navigating amidst 
Scylla and Charybdis, the avoidance of spurious claims of causality may easily leave one 
trapped in a strict methodological dogma with very little empirical implication. The only 
solution I see for this is to apply methodological expertise on a firm foundation of knowledge 
in physiology. A certain degree of pragmatism on the side of the epidemiologist may thereby 
serve us well in effectively enriching clinical research practice with methodological rigour. 
 
The past four years would not have been nearly as exciting without many of the people I 
encountered along the way. More than in any other field of research, obtaining a doctoral 
degree in medicine is a team effort, and more than in any other medical research 
undertaking, this is the case within the Rotterdam Study. Quoting the famous words of 
Bernard de Chartres, if I have seen further it is only because I have been standing on the 
shoulders of giants. I am indebted to all – research team and study participants alike – 
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whose goodwill over the past 28 years has provided me with the opportunity to complete 
this thesis. Frequent visits to Ommoord were a pleasant reminder of this, and the interaction 
with patients and participants an indispensable part of my training as a clinical 
epidemiologist. 
 
This adventure would not have commenced, nor come to a successful ending without the 
confidence and support of Professors Arfan Ikram and Peter Koudstaal. It is thanks to your 
skill, experience, and encouragement that I have been able to develop into an independent 
researcher. Professor Albert Hofman, I am most grateful for having had the opportunity to 
study under your auspices in the rich intellectual environment of the Harvard School of 
Public Health. At the cradle of my professional existence, I further distinguish Professors Jan 
van Gijn and Peter Rothwell. Many a day I gratefully acknowledge your belief in the potential 
of a young man with no prestigious official credentials. I can only wish to develop into such 
an inspiring mentor to others, as each of you has been to me. Likewise, many colleagues, 
notably of the Heart Brain Connection collaboration, the Alzheimer Cohorts Consortium, and 
the CHARGE consortium have been a huge source of inspiration over the past years. Co-
investigators of various studies within this thesis I owe my thanks for bettering my reasoning 
and writing. I would also like to thank all members of the reading committee and opposition, 
Professors Elly Hol, Hugh Markus, Francesco Mattace Raso, René Melis, Sudha Seshadri, and 
Meike Vernooij for their precious time devoted to the appraisal of this work.  
 
For encouragement, balance, focus, and timely distraction, I have to thank many friends, 
who from the proximity of the departmental 28th floor to distant parts of the world were 
always close at heart. Any personal note is best handwritten, but as common ground these 
will have my gratitude for the joy, affection, and way our friendships feed mutual 
development. Whether bonds grow stronger over time, or at times fade into memory, each 
leaves a permanent mark, which I treasure and consider invaluable.  
 
Tot slot, mijn lieve ouders. Alles wat ik heb bereikt, is dankzij de mogelijkheden die jullie mij 
hebben gegeven. Mijn geluk daarmee is niet te beschrijven. Dit werk is een direct gevolg van 
de verantwoordelijkheid die jullie mij meegaven om mijn talenten optimaal te benutten. Ik 
zal altijd blijven streven mij door deze les te laten leiden.  
 
 

Frank J. Wolters, June 2018 
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